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Abstract

This working paper studies the ”skew lognormal cascade distribution”, which is
proposed by the first time here, as the static solution of the simplified SIBM model
(Stephen Lihn 2008, SSRN: 1149142). This distribution exhibits fat-tail, asym-
metry tunable by a skew parameter, converges to the normal distribution, and
has finite moments. These fine properties make it very useful in financial appli-
cations. The analytic formula of the raw moments and the cumulants are calcu-
lated for both the symmetric and skew forms. The implication to the multiscaling
property is also studied for the symmetric distribution. The Taylor expansion on
the distributions and their logarithms are carried out. A numeric method is car-
ried out for the numerical computation of the probability density function. This
method can be implemented via a computer algebra system and enable the numeri-
cal algorithm to produce high precision result. This distribution is implemented on
http://www.skew-lognormal-cascade-distribution.org/ by the author. The author
has tried to apply the distribution to the daily log returns of several financial time
series, such as DJIA, WTI spot oil, XAU index, VIX index, 10-year Treasury, and
several currencies. They all showed very good fit.
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Introduction. This short working paper studies the skew lognormal cascade distri-
bution, which is the static solution of the simplified SIBM model (Lihn 2008, SSRN:
1149142). The skew distribution, which exhibits fat tail while maintains finite moments,
can be a very useful distribution describing financial statistics, such as the stock market.
The attempt is to work out the power expansion of this distribution so that the probability
distribution function (pdf) can be computed numerically without using computationally
expensive integrals. Even if this is not possible, the study should shed light on the inner
structure of this distribution. Both the symmetric distribution and the skew distribution
are studied. The analytic formula for the moments and cumulants are presented. The
implication to the multiscaling property is studied for the symmetric distribution.

Complicated algebraic results in this paper are carried out by the open source computer
algebra system, Maxima. Numerical computation is prototyped on GNU Octave.

1 The Simplified SIBM Model

In this section, we define the simplified SIBM model (Lihn 2008, SSRN: 1149142). We
shall use a logarithmic model for continuous-time stock price processes. The stock price
process X shall always be presented in its logarithm, log X (See 1.1 of Fernholz 2002),
which is abbreviated as χ.

Under the limit of τc → 0, the SIBM model can be reduced to the following stochastic
equation for for the stock price process:

dtχ(t) = Φ · eH [ dtW (t) + ( β · H + g) dt ] . (1)

This expression could be very useful in finance since most stochastic equations in finance
are written in the stock price processes, instead of the return processes. The parameters
are defined as following: Φ is a global constant, β is ”the skewness parameter”, and g is
the constant growth term. H is a time dependent normal process. However, to investigate
the static return distribution of a fixed time lag T , we can assume H follows the higher
order randomness hypothesis (HORN):

H ∼ N
(
0, η2

)
. (2)

In the computational order, averaging on H is applied last. With the help of the HORN,
we can define the log-price change x = χ(T )−χ(0) and deduce the probability distribution
function (pdf) p(x) by simply observing the functional form of the normal distribution:

p(x) =

ˆ ∞

−∞
dH 1

2π η σ(H)
e
−H2

2η2 e
− (x−σ(H) (β·H+g))2

2σ(H)2 , (3)
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where σ(H) = Φ · eH. It is easy to verify that
´∞
−∞ p(x) dx = 1. This pdf is the same as

the following distribution construct:

Dη,β,g,Φ = {x = (a + β · b + g) · Φeb, a ∈ N(0, 1), b ∈ N(0, η2)}. (4)

With the substitution of h = H/η, Equation (3) becomes

p1(x) =

ˆ ∞

−∞
dh

1

2π σ(h)
e−

h2

2 e
− (x−σ(h) (βηh+g))2

2σ(h)2 , (5)

where σ(h) = Φ · eηh. When β = 0 and g = 0, we have the symmetric pdf of

p2(x) =

ˆ ∞

−∞
dh

1

2π σ(h)
e−

h2

2 e
− x2

2σ(h)2 . (6)

In this paper, we will focus on exploring the properties of p1(x) and p2(x). The complexity
of p2(x) is less than p1(x), thus we shall work on p2(x) first.

2 The Properties of the Symmetric Distribution

In this section, we attempt to work out the statistic properties for the symmetric case.
First, by the substitution of z = h + η, we arrive at

p2(x) =

ˆ ∞

−∞
dz

1

2πΦ
e

η2

2
− z2

2 exp(− x2

2Φ2
e−2(ηz−η2)). (7)

The characteristic function of p2(x) is Ψ2(t) =
´∞
−∞ dx eitxp2(x) and

Ψ2(t) =

ˆ ∞

−∞
dz

1√
2π

e
η2

2
− z2

2 eηz−η2

exp(−Φ2t2

2
e2(ηz−η2)). (8)

Applying Equation (58), we have

Ψ2(t) =
∞∑

k=0

H2k(0)
Φ2kt2k

2k(2k)!

ˆ ∞

−∞
dz

1√
2π

e
η2

2
− z2

2 e(2k+1)(ηz−η2). (9)

For the symmetric distribution, all the odd terms are zero. The raw moments µn are
defined in terms of the characteristic function: Ψ2(t) =

∑∞
n=0 µn(it)n/n!. The integral is

simply e2k2η
2

. Thus we have

µ2k = |H2k(0)|
2k Φ2ke2k2η

2

= (2k)!
2kk!

Φ2ke2k2η
2

, or

µn = |n− 1|!!Φne
n2η2

2 (n ≥ 0).
(10)

Multiscaling: The functional form of Equation (10) is similar to that of a normal

distribution N(µ, σ2) if we substitute σ with Φ ekη2

. We can compare Equation (10) to
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the multiscaling of the return moments: µn = CnT ζ(n) in the multifractal model. We get
that C2k = (2k)!

2kk!
is simply the prefactor of the nth moment at scale T = 1 and ζ(n) is the

exponent of multiscaling power law. It indicates that, in order for multiscaling to hold,
we must have

ζ(n) ln(T ) =
n2

2
η2(T ) + n ln(Φ(T )). (11)

Thus η2(T ) = −2a ln(T ), Φ(T ) = T b where a, b are constants, and ζ(n) = −an2 + b n.
The constant b resembles the Hurst exponent in the fractional Brownian motion. This
is well understood. But the case for η2 is more complicated. We know that, in the
financial markets, η2 is positive and approaches to zero as T increases. Therefore, we
must have ln(T ) < 0 and a > 0. η2 scales linearly with ln(T ). This is similar to how
the autocorrelation of the volatility scales. We also notice that η2 causes ζ(n) to have a
second order scaling term n2.

The cumulants κn are related to the raw moments µn by

∞∑
n=0

µn
(it)n

n!
= exp

( ∞∑
n=0

κn
(it)n

n!

)
. (12)

This formula allows us to derive all the cumulants from the raw moments. Similar to
the Hermite Polynomials, we can define the polynomials L2k(x) for the cumulants in the
symmetric lognormal cascade distribution such that

κ2k =
(2k)!

2kk!
Φ2ke2kη2

L2k(e
4η2

). (13)

Table 1 shows the first few L2k(x) polynomials. There are two parts in L2k(x): The first
part is (x− 1)k−1. The second part is a polynomial in the order of (k− 1)(k− 2)/2 when
k > 2. The constant in the second polynomial (i.e., |L2k(0)|) is simply (k − 1)!.

Table 1: The polynomials L2k(x) for the cumulants in the symmetric lognormal cascade
distribution

L0(x) = 0

L2(x) = 1

L4(x) = x− 1

L6(x) = (x− 1)2(x + 2)

L8(x) = (x− 1)3(x3 + 3x2 + 6x + 6)

L10(x) = (x− 1)4(x6 + 4x5 + 10x4 + 20x3 + 30x2 + 36x + 24)

L12(x) = (x− 1)5(x10 + 5x9 + 15x8 + 35x7 + 70x6 + 120x5 + 180x4 + 240x3 + 270x2 +
240x + 120)
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The second cumulant is the variance, κ2 = µ2 = Φ2e2η2
; and the fourth cumulant

equals to (µ4 = 3Φ4e
8η2

)

κ4 = 3Φ4e4η2

(e4η2 − 1). (14)

The kurtosis is κ4/µ
2
2 = 3(e4η2 − 1) . The kurtosis increases rapidly as η increases. For

example, the stock market often has η ≈ 0.5. The change in η can change the kurtosis by
nearly one order of magnitude. The kurtosis is 2.6 when η = 0.4, but it is 5.1 if η = 0.5,
and it reaches 9.7 when η = 0.6. So it is quite difficult to decide the exact value of η from
the observed kurtosis in the data.

Multiscaling: On the other hand, if we consider multiscaling law in Equation (11),
we have the kurtosis equal to 3(T−8a − 1) where a > 0 and T < 1. In the meantime, the
variance scales like T−4a+2b. We find that, as T increases, kurtosis decreases much faster
than the variance.

We shall also calculate the sixth cumulant. From µ6 = 15Φ6e18η2
and

κ6 = 15Φ6e6η2

(e12η2 − 3e4η2

+ 2). (15)

And for the eighth cumulant, from µ8 = 105Φ8e32η2
, we have

κ8 = 105Φ8e8η2

(e24η2 − 4e12η2 − 3e8η2

+ 12e4η2 − 6). (16)

This result will be used in Section 3 to verify the relation between the cumulants and the
Taylor expansion of ln(p2(x)).

3 The Taylor Expansion of the Symmetric Distribu-

tion

It is immediately obvious that p2(0) = 1√
2πΦ

eη2/2. And dp2(0)/dx = 0. Thus p2(x) has a

round top near zero. In general, we use Taylor expansion to obtain dnp2(0)/dxn which is

denoted as p
(n)
2 (0). After we work out p

(n)
2 (0), we will proceed to obtain Taylor series of

ln(p2(x)) which is more useful in numerical applications.
Starting from Equation (7), we have the Taylor series of p2(x) as

p2(x) =

ˆ ∞

−∞
dz

1

2πΦ
e

η2

2
− z2

2

∞∑

k=0

(−1)kx2k

2kk!Φ2k
e−2k(ηz−η2), (17)

which is

p2(x) =
1√
2π

∞∑

k=0

(−1)kx2k

2kk!Φ2k+1
e

η2

2
(2k+1)2 . (18)

This should equate to the Taylor expansion of p2(x) =
∞∑

n=0

p
(n)
2 (0)xn

n!
. Therefore, we get

p
(2k)
2 (0) =

1√
2π

(−1)k(2k)!

2kk!Φ2k+1
e

η2

2
(2k+1)2 , (19)
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which is also equal to 1√
2π

(−1)k

Φ2k+1 e
η2

2 µk
2µ2k.

The more interesting presentation with regards to the lognormal cascade distribution
is ln(p2(x)), which is reduced to the form of a normal distribution, −x2 when η → 0. We
can define

ln(p2(x)
p2(0)

) =
∞∑

n=1

Lnxn

n!
,

Ln = dn−1

dxn−1

(
p
(1)
2 (x)

p2(x)

)

x=0

.
(20)

All Ln terms can be calculated since all p
(n)
2 (0) terms are known via Equation (19). It

turns out that the Taylor expansion of ln(p2(x)) is directly related to the polynomials in
the cumulants as

L2k = (−1)k(2k − 1)!!Φ−2ke4kη2

L2k(e
4η2

), (21)

or (−1)kκk
2κ2kΦ

−6k. This relation gives us an alternative way of computing L2k(x) to as
high order as we wish. For instance, L2 = −Φ−2e4η2

= −κ2
2Φ

−6; L4 = 3Φ−4e8η2
(e4η2−1) =

κ2
2κ4Φ

−12; L6 = −15Φ−6e12η2
(e12η2 − 3e4η2

+ 2), which is −κ3
2κ6Φ

−18.

Limitation of Taylor Expansion Method: Since ln(p2(x)
p2(0)

) should be negative all
the time, the Taylor series is better to stop at a negative term to prevent from blowing
up. Thus kmax should be an odd number. However, numerical simulation has shown that
the methods of Taylor expansion outlined in this section do not go very far. In particular,
it does not work well for large η and large x. The problem of divergence becomes obvious
when we recognize that L2k is in the order of (k − 1)(k − 2)/2 in e4η2

. Thus the power
series diverges badly as k increases. We are in need of another method for numerical
computation.

4 The Numerical Method for The Symmetric Distri-

bution

Equation (20) on the surface looks like a fairly good analytic solution for the symmetric
distribution. But when we use it for numerical computation, we find that Taylor series
does not converge fast enough as η increases from zero. In particular, when η → 0.5, it
would require many orders to compute ln(p2(x)). Thus the Taylor expansion on ln(p2(x))
becomes useless. That is, we have a singularity point in this distribution which deserves
some study. Especially η = 0.5 represents the characteristic fits of the US stock market
and the tails appear to be linear, which resembles a power law. It seems to have a special
meaning.

The divergence stems from the fact that the eη2
term is in the order of k2 in this

distribution. This is very unusual in Taylor expansion.

Since the logarithmic expansion is invalid, let’s go back to Equations (8) and investi-
gate p2(x) in more detail. We can decompose the integrand in terms of the exponentials
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of two polynomials, f1(z) and f2(z).

p2(x) =

ˆ ∞

−∞
dz

1

2πΦ
e

η2

2 ef1(z)ef2(z), (22)

in which

f1(z) = −z2

2
, f2(z) = − x2

2Φ2
e−2ηz+2η2

. (23)

f1(z) does not vary with x and η. It diverges to −∞ quadratically and is symmetric on
z. Only f2(z) depends on x and η. It converges to zero when z is large and diverges to
−∞ exponentially as z decreases. Therefore, the sum of f1(z) and f2(z) defines a region,
smaller than that of f1(z), to be integrated to yield p2(x). The peak of f1(z) + f2(z) can

be determined by
(

d(f1(z)+f2(z))
dz

)
z= zp

= 0 and

zp =
ηx2

Φ2
e2η2

e−2η zp . (24)

We can define c = 2η
(

ηx2

Φ2 e2η2
)

and zp = c y
2η

= y
(

ηx2

Φ2 e2η2
)
, and reduce Equation (24) to

the following mathematical problem

y = e−c y or
1

y
ln(

1

y
) = c, (c > 0). (25)

This can be solved numerically and the resulting zp(x, η) determines the order of magni-
tude of p2(x). The next task is to determine the width of ef1(z)ef2(z) around zp, which can
be accomplished by Taylor expansion at zp. Let z = zp + v, we have

f2(zp + v) = − zp

2η
e−2ηv ≈ − zp

2η

(
1− 2ηv + 2η2v2

)
+ f3(v) (26)

where f3(v) = − zp

2η

∞∑
k=3

(−2η)kvk

k!
contains the higher order terms. This expansion allows us

to obtain

p2(x) =

ˆ ∞

−∞
dz

1

2πΦ
e

η2

2 e−
1
2
(zp+v)2e−

zp
2η (1−2ηv+2η2v2)ef3(v), (27)

which is

p2(x) =
1

2πΦ
e

1
2(η2− zp

η
−z2

p)
ˆ ∞

−∞
dz e−

1
2
ψ2v

2

ef3(v), (28)

where ψ =
√

1 + 2ηzp. From Equation (28), we found that knowing zp is very useful in
the calculation of p2(x). zp is where the maximum probability is located. And σ = 1/ψ
is approximately the ”width” of the Gaussian integrand. If p2(x) is to be carried out
numerically, one only needs to integrate in the neighborhood of zp extending reasonably
far from the ”width”. More details on numerical integration will be explored when we
discuss the numerical method of the skew distribution.



5 THE PROPERTIES OF THE SKEW DISTRIBUTION 8

Ignoring f3(v), we have the first order solution

p2(x) =
1√

2πΦ
e

1
2(η2− zp

η
−z2

p) 1

ψ
. (29)

When both η and η2x2 are very small, zp ≈ ηx2

Φ2 and p2(x) ≈ 1√
2πΦ

e
− 1

2

(
x2

Φ2

)
, which demon-

strates the convergence to a normal distribution.

To calculate the higher order terms, we can expand ef3(v) =
∞∑

k=0

akv
k where ak =

1
k!

dk

dxk

(
ef3(v)

)
v=0

, and use Equation (64) to carry out the Gaussian integrals. Notice that

a0 = 1 and a1= a2 = 0. The Gaussian integrals on odd vk terms are zero. Thus we have

p2(x) =
1√

2πΦ
e

1
2(η2− zp

η
−z2

p)

(
1

ψ
+

∞∑

k=2

a2k
|2k − 1|!!

ψ2k+1

)
. (30)

The first few a2k are listed in Table 2 . This formula does satisfy our need for a more
accurate numerical calculation over a large range of η and x. For instance, when η = 0.5,
Equation (30) has precision of more than 95% when expanded up to a10. However, it still
does not provide any insight about the tail structure of p2(x).

Table 2: The parameters ak in the Taylor series of ef3(v) in the symmetric lognormal
cascade distribution (And 3!! = 3, 5!! = 15, 7!! = 105, 9!! = 945)

a4 = −zpη
3/3

a6 = zpη
4(−2η + 10zp)/45

a8 = zpη
6(−2η + 91zp)/630

a10 = zpη
8(−2η + 456zp − 1050

z2
p

η
)/14175

5 The Properties of the Skew Distribution

In this section, we follow the same approach to solve the more complicated skew distri-
bution

p1(x) =

ˆ ∞

−∞
dh

1

2π σ(h)
e−

h2

2 e
− (x−f(h) )2

2σ(h)2 , (31)
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where f(h) = σ(h) (βηh + g) and σ(h) = Φeηh. By the substitution of z = h + η, we
arrive at

p1(x) =

ˆ ∞

−∞
dz

1

2πΦ
e

η2

2
− z2

2 exp(−(x− f(z − η))2

2Φ2
e−2(ηz−η2)). (32)

The characteristic function of p1(x) is Ψ1(t) =
´∞
−∞ dx eitxp1(x) and

Ψ1(t) =

ˆ ∞

−∞
dz

1√
2π

e
η2

2
− z2

2 eηz−η2

exp(it f(z − η)− Φ2t2

2
e2(ηz−η2)). (33)

Let mz = f(z−η)/Φσz = (βηz−βη2+g) and σz = eηz−η2
, using Hermite polynomials,

we have

Ψ1(t) =

ˆ ∞

−∞
dz

1√
2π

e
η2

2
− z2

2 σz

∞∑
n=0

Hn(imz/
√

2)
(Φtσz/

√
2)

n

n!
. (34)

The nth moment of p1(x), µn, is the coefficients of (it)n multiplied by (n!) from the
Taylor series of Ψ1(t). That is, dnΨ1(t)/i

ndtn, which is

µn =

ˆ ∞

−∞
dz

Φn

√
2π

e
η2

2
− z2

2 σn+1
z

Hn(imz/
√

2)

(i
√

2)
n , (35)

which can be simplified by letting z = w + (n + 1)η,

µn = Φne
n2η2

2

ˆ ∞

−∞
dw

1√
2π

e−
w2

2

n∑

k=0

∣∣Hk
n

∣∣(βη)k(w + βn/βη)
k

(
√

2)
n+k

, (36)

in which βn = nβη2 + g. By applying Equation (66) (a = 1/2, b = βn/βη), we obtain the
analytical form of the raw moments

µn = Φne
n2η2

2

n∑

k=0

∣∣Hk
n

∣∣
(
√

2)
n+k

[k/2]∑
p=0

k!|2p− 1|!!
(k − 2p)!(2p)!

βk−2p
n (γ − 1)p, (37)

where [f ] is the largest integer not greater than f and γ = β2η2 + 1.
The first raw moment is straightforward

µ1 = Φe
η2

2 β1 = Φe
η2

2 (βη2 + g). (38)

The second raw moment is

µ2 = Φ2e2η2

(γ + β2
2). (39)

The third raw moment is

µ3 = Φ3e
9η2

2 β3(3γ + β2
3). (40)



6 THE TAYLOR EXPANSION OF THE SKEW DISTRIBUTION 10

The fourth raw moment is

µ4 = Φ4e8η2

(3γ2 + 6β2
4γ + β4

4). (41)

The cumulants can be calculated via Equation (12). The first cumulant κ1 is the same
as the first raw moment µ1, which is the mean of the skew distribution. We can clearly

see that both g and βη2 shift the distribution, with the prefactor of 2Φe
η2

2 . If we were to
require a positive mean while having a negative skewness, which is the case in the stock
market, we then need g > −βη2 (β < 0). However, the growth term g is part of βn in the
higher moments. The factor n in βn makes g less important as n increases. The second
cumulant κ2 is µ2 − µ2

1, which is the variance. The third cumulant κ3 is µ3 − 3κ2κ1 − κ3
1.

The skew is defined as κ3/κ
3/2
2 . The fourth cumulant κ4 is µ4−4κ3κ1−3κ2

2−6κ2κ
2
1−1κ4

1.
And the kurtosis is κ4/κ

2
2. The analytical form of cumulants has become very complicated,

thus is not listed here.

6 The Taylor Expansion of the Skew Distribution

In the skew distribution p1(x), all the odd moments and odd derivatives are nonzero. For
example, as a baseline, p1(0) is

p1(0) =
1√

2πΦ

1

γ1/2
e
−(2βg+1)η2+g2

2γ . (42)

And the first derivative is

p
(1)
1 (0) =

−1√
2πΦ2

3βη2 − β1

γ3/2
e−

5β2η4−2(3ββ1+2)η2+β2
1

2γ . (43)

We get a taste of complexity involved in the skew distribution. In general, we use Taylor
expansion to obtain dnp1(0)/dxn which is denoted as p

(n)
1 (0). After we work out p

(n)
1 (0),

we then proceed to obtain Taylor series of ln(p1(x)).

Starting from Equation (32) and mz = (βηz − βη2 + g) and σz = eηz−η2
, we have

p1(x) =

ˆ ∞

−∞
dz

1

2πΦ
e

η2−z2

2 exp(−1

2
(

x

σzΦ
−mz)

2

), (44)

which is expanded into

p1(x) =

ˆ ∞

−∞
dz

1

2πΦ
e

η2−z2−m2
z

2

∞∑
n=0

Mn(mz, i)

n!

(
x

σzΦ

)n

. (45)

This should equate to the Taylor expansion of
∞∑

n=0

p
(n)
1 (0)xn

n!
.
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Therefore, we get

p
(n)
1 (0) =

ˆ ∞

−∞
dz

1

2πΦn+1
e

η2−z2−m2
z

2 σ−n
z Mn(mz, i), (46)

which can be simplified by letting w = z + ηcw,n,

p
(n)
1 (0) =

eaw,n

2πΦn+1

ˆ ∞

−∞
dw e−

w2

2 Mn( mw, i), (47)

in which cw,n = ((n + 1) + βg− γ)/γ, aw,n = ((n + 1)2η2 + 2(n + 1)gβη2 − g2)/(2γ2), and

mw = βηw − (cw,n + 1)βη2 + g. It is now obvious that p
(n)
1 (0) in Equation (47) can be

carried out by a computer algebra system, similar to Equation (36).
Thus the Taylor expansion of the skew lognormal cascade distribution in its logarithm,

ln(p1(x)) can also be calculated correspondingly.

ln(p1(x)) = ln(p1(0)) +
∞∑

n=1

Lnxn

n!
,

Ln = dn−1

dxn−1

(
p
(1)
1 (x)

p1(x)

)

x=0

.
(48)

We can calculate all Ln terms since all p
(n)
1 (0) terms are known via Equation (47). Here we

only work out the first few terms: L1 = g−2βη2

γΦ
e(3+2βg)η2/2γ; L2 = g−2βη2

(γΦ)2
e(3+2βg)η2/2γ(((g − 3βη2)

2−
γ)eη2/γ − (g − 2βη2)

2
); L4 = 3Φ−4e8η2

(e4η2 − 1) = κ2
2κ4Φ

−12; L6 = −15Φ−6e12η2
(e12η2 −

3e4η2
+ 2), which is −κ3

2κ6Φ
−18. That is, the Taylor expansion of ln(p2(x)) is related to

the cumulants as L2k = (−1)kκk
2κ2kΦ

−6k.

7 The Numerical Method of The Skew Distribution

In the similar manner as outlined in Section 4, we can obtain an efficient numerical
method for the skew distribution. Let’s go back to Equations (32) and investigate p1(x)
in more detail. We can decompose the integrand in terms of the exponentials of two
polynomials, q1(z) and q2(z).

p1(x) =

ˆ ∞

−∞
dz

1

2πΦ
e

η2

2 eq1(z)eq2(z), (49)

in which

q1(z) = −z2

2
, q2(z) = −(x− f(z − η))2

2Φ2
e−2ηz+2η2

. (50)

where f(h) = Φeηh(βηh + g). The addition of the skew term f(z − η) only affects the
peak of q1(z) + q2(z) slightly (except for very large g). The formula describing the peak
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position zp however becomes quite complicated due to the presence of f(z − η)

zp =
η

Φ2
e2η2

e−2η zp

(
(x− f( zp − η))2 + (x− f( zp − η))

f
′
( zp − η)

η

)
, (51)

where f
′
(h) = Φeηhη(βηh + β + g). The peak position zp can be solved numerically and

the resulting zp(x, η, β, g) determines the order of magnitude of p1(x). A precise zp will
significantly improve the accuracy of the integral. The next task is to determine the
”width” of eq1(z)eq2(z) around zp, which can be accomplished by Taylor expansion at zp.
Let z = zp + v, we have

q1(zp + v) + q2(zp + v) = −1

2

(
c0 + ψ2

1v
2
)

+ q3(v) (52)

where c0 = z2
p + zp

η
− 1

Φ2 e
2η2

e−2η zp(x−f( zp−η)) f
′
( zp−η)

η
, and ψ2

1 is too complicated to be

listed here. And q3(v) =
∞∑

k=3

ckvk

k!
contains the higher order terms (ck = dk

dvk (q2(zp + v))v=0).

This expansion allows us to obtain

p1(x) =
1

2πΦ
e

1
2(η2−c0)

ˆ ∞

−∞
dz e−

1
2
ψ2

1v2

eq3(v). (53)

Ignoring q3(v), we have the first order solution

p1(x) =
1√

2πΦ
e

1
2(η2−c0) 1

ψ1

. (54)

To calculate the higher order terms, we can expand eq3(v) =
∞∑

k=0

bkv
k where bk =

1
k!

dk

dxk

(
eq3(v)

)
v=0

, and use Equation (64) to carry out the Gaussian integrals. Notice that

b0 = 1 and b1= b2 = 0. The Gaussian integrals on odd vk terms are zero. Thus

p1(x) =
1√

2πΦ
e

1
2(η2−c0)

(
1

ψ1

+
∞∑

k=2

b2k
|2k − 1|!!

ψ2k+1
1

)
. (55)

Numerical integration can be carried out with high precision in the neighborhood of
zp by extending a reasonable range as determined by σ ≈ 1/ψ1. Numerically speaking,
although ψ1 is hard to calculate analytically, σ need not to be very precise. It only needs
to be able to capture the ”width” reasonably, which means g(zp ± σ) ≈ e−1/2. Then we
can use, for instance, Simpson’s rule to obtain p1(x). Assume we want to take m samples
for each σ interval and perform our integration from zp − n σ to zp + n σ, we have

p1(x) ≈
(

4
∑

even k

g(zk) + 2
∑

odd k

g(zk)

)
h

3
, (56)

zk = zp +
k

m
σ, h =

σ

m
, k ∈ [−m n, +m n],
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in which g(z) is the integrand

g(z) =
1

2πΦ
e

η2

2 eq1(z)+q2(z). (57)

When m = 8 and n = 8 and zp is within 1% error to the real peak position, the integral
requires 129 samplings (in addition to the effort of obtaining zp and σ) and the result is
within 10−8 error.

The numerical method has been implemented by the author using GNU Octave. It is
made available on http://www.skew-lognormal-cascade-distribution.org/. The author has
tried to apply the distribution to the daily log returns of several financial time series, such
as DJIA, WTI spot oil, XAU index, VIX index, 10-year Treasury, and several currencies.
They all showed very good fit.

8 Appendix: Hermite Polynomials, Gamma Func-

tion, Etc.

In this Appendix, we provide the definitions of Hermite polynomials and Gamma
function according to Arfken 1985. These definitions are used extensively in this paper.
We also suggest some approaches to solve y = e−c y.

The Hermite polynomials Hn(x) are defined by the generating function

g(x, t) = e−t2+2tx =
∞∑

n=0

Hn(x) tn

n!
,

Hn(x) =
n∑

k=0

Hk
nxk,

(58)

where Hk
n are the coefficients in Hn(x). Table 3 shows the first few such polynomials.

Hn(x) follow the recursive relations

Hn+1(x) = 2x Hn(x)− 2n Hn−1(x),
H

′
n(x) = 2n Hn−1(x),

(59)

which can be initiated by H0(x) = 1 and H1(x) = 2x. Useful special cases are H2k(0) =

(−1)k (2k)!
k!

and H2k+1(0) = 0. Alternatively, we may encounter the following form where
all the coefficients are positive

g2(x, t) = et2+2tx =
∞∑

n=0

Hn(ix)
in

tn

n!
,

Hn(ix)
in

=
n∑

k=0

∣∣Hk
n

∣∣xk.
(60)
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Table 3: First Seven Hermite Polynomials

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x

H4(x) = 16x4 − 48x2 + 12

H5(x) = 32x5 − 160x3 + 120x

H6(x) = 64x6 − 480x4 + 720x2 − 120

Hn(x) is orthogonal to one another as following

ˆ ∞

−∞
dx e−x2

Hn(x)Hm(x) = δmn 2n
√

π n!. (61)

The Gamma function Γ(z) is defined as a Gaussian integral

Γ(z) = 2

ˆ ∞

0

dx e−x2

x2z−1. (62)

When z is an integer, we have Γ(z + 1) = z!. We occasionally use the double factorial
notation:

(2n)!! = 2nn! = 2 · 4 · 6 · ... · (2n),
(2n + 1)!! = (2n + 1)!/(2nn!) = 1 · 3 · 5 · ... · (2n + 1).

(63)

The following Gaussian integrals are of importance

´∞
0

dx e−a x2
x2p+1 = p!

2ap+1 ,´∞
−∞ dx e−a x2

x2p = (p−1/2)!

ap+1/2 = |2p−1|!!
(2a)p

√
π
a
, p ≥ 0.

(64)

And note that Γ(1/2) =
√

π and
´∞
−∞ dx e−a x2

=
√

π
a
. The binomial expansion is defined

as

(x + b)k =
k∑

p=0

Cp
kx

pbk−p, (65)

where Cp
k are the binomial coefficients, k!

(k−p)!p!
. Thus

G(a, b, k) =
´∞
−∞ dx e−a x2

(x + b)k

=
√

π
a

[k/2]∑
p=0

k!|2p−1|!!
(k−2p)!(2p)!

bk−2p

(2a)p ,
(66)
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where [f ] is the largest integer not greater than f .
Numerical Solution for y = e−c y:
The following equation

y(c) = e−c y(c) (67)

plays an important role to the solution of the lognormal cascade distribution. Thus we
provide our exploration on it. In general, this equation can be solved via traditional
root finding methods, such as Newton’s method and the bisection root-finding method.
These approaches are required to converge quickly in order to be useful in numerical
implementation. Here we suggest three iterative approaches to find the root because they
reveal important inner structure of this equation.

There are a few important known solutions of y(c): when c = 0, y = 1; when c = ln(4)
(about 1.386), y = 1/2; when c = e (about 2.718), y = 1/e; when c = 1, y = 0.567

(that is, solution of (1/y)1/y = e); when c → ∞, y = 0. However, there is a singularity
in this equation, that is, when c = e, y = 1/e. This singularity stems from the fact
that if one attempts to use Newton’s method, the first derivative becomes zero, that is,
ce−c y − 1 → 0. Therefore, the convergence becomes infinitely slow near c = e.

When c ¿ e (for instance, c < 0.1), we can define y1 = c and apply yk = e−c yk−1

iteratively. yk will converge to the root quickly.
When c is reasonably large (for instance, c > 0.1), we can let c = e1+p and y = e−(1+q)

and we have 1 + q = epe−q. Expanding the right hand side to the order of q2, we can
get the approximate root q (to less than 1% error) by solving 1 + q = ep(1 − q + q2/2).
This approximation works well for small p (p < 1). For larger p, the initial guess can
simply be q1 = p − ln(1 + p), based on q = p − ln(1 + q). Then apply Newton’s method
qk = (ep−qk−1(1 + qk−1) − 1)/(ep−qk−1 + 1) to improve the accuracy of the root quickly.
This method works quite well for a large range of c.

If c À e (for instance, c > e20), another simple alternative becomes available. That is
to iterate on the inverse of y. Let z = 1/y, we have z = c/ln(z). We can define z1 = e1+q1

and apply zk = c/ln(zk−1) iteratively. zk will converge to the inverse of the root quickly.
Once we use these methods to find out y(c), we can attempt to fit it with simpler

analytic forms, which can be fed into our iterative methods above as better initial guess
(improvement to y1 and z1above) for superior numerical convergence. Let x = 1− e−c, x
is in the range of 0 and 1. y(x) is very smooth except when x is near 1 (That is, when

c is large). Thus we can use polynomial approximation y(x) = 1 +
n∑

k=1

(−1)kBkx
k. When

n = 9, the error of the fit is smaller than10−4 when x < 0.934 (that is, c < e). The result
is listed in Table 4.
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Table 4: The parameters Bk in the polynomial approximation of y(x) in the symmetric
lognormal cascade distribution

B1 = 1.0011

B2 = 1.0515

B3 = 2.2746

B4 = 7.7488

B5 = 24.3254

B6 = 50.0072

B7 = 61.3781

B8 = 40.7858

B9 = 11.3301
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