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Abstract

A continuous-time scale-invariant Brownian motion (SIBM) stochastic equation is
developed to investigate the dynamics of the stock market. The equation is used to
solve the fat tail distribution of the stock universe and the DJIA time series. It is
also used to model the volatility clustering in the DJIA time series. The equation is
transformed from the Langevin equation into a fractal expression involving an infi-
nite array of random walk. It predicts an elegant way of generating the skew form of
the lognormal cascade distribution (Kolmogorov and Mandelbrot), which describes
the static log-return distribution in the financial market as well as the velocity
distribution in Largrangian turbulence. The higher order randomness (HORN) hy-
pothesis is introduced as the stochastic source of the cascade distribution. A leakage
term from HORN is introduced to model the covariance between large volatility and
large negative return. A volatility model based on two SIBM processes is built to
model the volatility autocorrelation. The volatility half-times of 20 days and 300
days are extracted from the DJIA data. The model generates the static log-return
distributions from 10 days to 320 days that match the DJIA data satisfactorily. It
also predicts an alternative interpretation of the volatility smile/skew observed in
the options market. The relation between the SIBM model and the multifractal
random walk model is examined, which yields a simplified SIBM model that could
be quite useful in finance.
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Introduction. The modern portfolio theory (MPT) has been developed since Harry
Markowitz, based on mean-variance analysis of the normal distribution (Markowitz 1952).
However, in almost parallel, B. B. Mandelbrot (Mandelbrot 1963) pointed out the tails
of speculative price fluctuations follow a power law, which is a direct invalidation of the
normality assumption of MPT. The debate of whether the normality assumption is valid
for time series analysis and/or portfolio optimization has been going on for decades. In
recent years, it is widely acknowledged that the behavior of speculative price fluctuations
deviates from the standard geometric Brownian motion in several major ways:

First, the market exhibits much larger volatility in the tails. These rare but large
events in the tails, so-called fat tails, have caused significant underestimate of market
risk. The most disastrous example is the one-day 29% crash on Oct 19, 1987. The
risk is typically amplified through the derivatives and many exotic structured products.
Inadequate financial modeling has caused painful repercussion during the credit crunch
of 2007-2008.

High frequency market data analyses have showed that the fat tails are very pro-
nounced in the short timeframes. The structure of the tails has been analyzed in terms
of the truncated Levy distribution (Mantegna and Stanley 1995) and the lognormal cas-
cade of Gaussian distribution (Ghashghaie et al 1996). It turned out that the difference
between the two distributions is in the distant tails, thus, is very difficult to differentiate.
Nevertheless, these results pointed out the big direction what the candidate models should
look like.

Second, it is also observed that the volatility often clusters together and evolves over
a longer timeframe in many financial markets (Ding, Granger, and Engle 1993). This is
called volatility clustering or heteroskedasticity. The fat tail distribution and volatility
clustering are not unique to the financial market. They have been observed in many fields
of science, which make the pursuit of a satisfactory solution all the more interesting and
important. Third, stock volatility tends to increase when stock prices drop. This is called
the leverage effect, or, in stochastic term, negative covariance between stock returns and
its volatility.

In order to conquer these statistical “anomalies”, several directions of research have
been undertaken. First, the ARCH class of econometric models (Engle 1982) has suc-
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cessfully explained volatility clustering in a very general manner. With sufficiently large
number of parameters, it is able to predict future volatility with satisfactory precision.

Second, attempts have been made to build stochastic models to account for these
effects, such as the Heston model (Heston 1993). These models were summarized sys-
temicly in Gatheral 2006. This line of effort is still work-in-progress. As Gatheral noted
(p. 66) that the link between price jumps and volatility changes is still missing. And any
single one of these models can not produce satisfactory shape for the volatility skew/smile
without bandage from the others.

Third, the most mathematically elegant approach is from the fractal theory. Mandel-
brot et al (Mandelbrot, Fisher, and Calvet 1996) proposed the multifractal model for asset
return (MMAR), which is based on Mandelbrot’s earlier works on multifractal, fractional
Brownian motion, and Levy-stable distribution. As part of the latest efforts to improve
the MMAR models, Bacry, Kozhemyak, and Muzy 2008 presented the continuous cas-
cade models for asset returns. The concept of the cascade structure was first proposed
by Kolmogorov 1962 and was examined in great details in Mandelbrot 1974 in the study
of turbulence. Bacry et al showed that the lognormal cascade multifractal random walk
model has rich enough structure to reproduce faithfully most of empirical return statistical
properties.

On the other hand, the lognormal cascade distribution has been confirmed in high
precision experiments in the fully developed Largrangian turbulence (e.g., Voth et al 2002).
It has since been classified into a new kind of statistics, called “superstatistics” (Beck,
Cohen, and Swinney 2005). The connection between the turbulence in fluid dynamics
and the economic data in the financial market is becoming apparent.

In this paper, a continuous-time scale-invariant Brownian motion (SIBM) equation
is proposed in an attempt to explain the fat tails, volatility clustering, and the leverage
effect in a coherent manner. This work is based on a new framework to view and dissect
the market data, which is outlined in Section 1. By utilizing this framework, we analyze
the static characteristics of both the stock universe and the stock index time series by
using the more accessible daily data (instead of the more proprietary high frequency
data). An interesting funnel shape is presented as the signature of the underlying fat
tail distribution. The proposed SIBM equation traces its root to the classical Langevin
equation (See Karatzas 1991, Section 5.6, Example 6.8), whose variations have been
adapted to model many mean-reverting stochastic processes. However, the Langevin
equation has a fundamental flaw to model stock price behavior. Its return process is
dominated by a single frequency of oscillation. The price process that it produces lacks
the self-similar characteristics, which makes it not scale-invariant. In Section 2, I will
present the proposed SIBM equation and explain how it is “derived” by combining an
infinite array of the Langevin equations. Several fundamental features, such as the fractal
characteristics, the scale dimension, and the volatility density, will be introduced. In
Section 3, the hypothesis of the higher order randomness (HORN) is introduced, which
is required to produce the correct result of the distribution. The important translational
property of the equation is explored. The HORN is a perturbation to the volatility density
in the scale dimension, which is amplified exponentially by the translational property. The
outcome is an elegant way to produce the lognormal cascade distribution. A leakage term
from HORN is then introduced to model the covariance between large volatility and large
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negative returns. This term is responsible for the observed negative skewness in the log-
return distribution. This leakage term is believed to exist in many financial time series
(See Appendix). The combination of the HORN and the leakage term results in the skew
cascade distribution, which is the sole invention of this work. In Section 4, the relation
between the funnel shape and legendary Mr. Market is discussed. After the solution to
the static distribution is developed, the time series analysis on the volatility clustering is
built out in Section 5. This involves a simple two-SIBM model for the volatility process.
Two autocorrelation half-times, 20 days and 300 days, are extracted and the result of a
1200-year simulation is presented. A possible approach to the volatility skew/smile within
the existing framework is explored in Section 6. It predicts that the volatility skew/smile
is the combined effect of the kurtosis from the cascade distribution and the skewness from
the leakage term. In Section 7, the relation between the SIBM model and the multifractal
random walk model is examined, which yields a simplified SIBM model that could be
quite useful in finance.

1 The Static Characteristics of the Stock Market

In this section, we start with the basic definitions that are used throughout this paper.
The market data is presented as the problem statement, which sets the goal of this paper
– to explain the distribution pattern observed in the stock market.

We shall use a logarithmic model for continuous-time stock price processes. The stock
price process X shall always be presented in its logarithm, log X (See 1.1 of Fernholz
2002), which is abbreviated as χ. The stock price process is the integral of the stock
return process r(t), 1

χ(t) − χ (0) =

ˆ t

0

r (s)ds (1)

, where r(t) will be defined in Section 2. During a period of time [0, T ], the logarithmic
rate of return R is defined as

R =
χ(T ) − χ (0)

T
=

ˆ T

0

r (s)ds

T
(2)

which can be calculated by either simple subtraction of prices at endpoints or utilizing
the more sophisticated linear regression. Our unit of time is 1 day when calculating R,
therefore we multiply R by 250 as the annualized return in all the figures since there are
about 250 trading days per year.

I introduce a new quantilty, the price volatility S, defined as

S = std( χ(t) − R t ) ≈ std(χ(tj) − R tj). (3)

, where j is the trading day number and tj+1 − tj = ΔT . However, I found that the
preferred presentation of the price volatility is log S, in which normality is restored. log S
is like the Richter magnitude scale in measuring earthquakes. It measures how volatile
the price process is when moving from one price to another during [0, T ]. An easier way to
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understand R and S is to imagine two trend lines L±(t) defined as L±(t) = L(0)+R t ±S t
such that 68% (one standard deviation) of data points χ(t) falls between the two trend
lines during [0, T ]. Therefore, 2·S represents the medium height of a trend in the log-price
space.

The (R, log S) framework is used throughout this paper. One may ask why not use the
volatility, std(r(t)), from the classical mean-variance formula? The first reason is practical.
The second reason is theoretical. First, during 2002-2004 when I was formulating my
stochastic investment strategy (Lihn 2006), it appeared to me std(r(t)) does not reflect
the investment risk correctly. For example, return series A={1,1,-1,-1}, and return series
B={1,-1,1,-1}, have the same 〈r(t)〉 and std(r(t)), but the price fluctuation of A is twice as
large as that of B. The crucial temporal correlation is not captured in the mean-variance
analysis. In practice, correlated price movement, the so-called momentum, is critical to
investment risk. Second, prior to the discovery of the SIBM equation, I was building a
model based on the Langevin equation:

dr(t) = α(μ − r(t))dt + σdW (t) (4)

, where α is called the viscosity in physics, or mean reverting strength in finance; μ is the
terminal rate of return; σ is the volatility; W (t) is the standard Brownian motion. I soon
realized that it is important to have a second quantity, in addition to R, that characterizes
the price trend. 2 The formula for log S was developed for this purpose. (In this case,
log S ∝ √

α/σ approximately, Lihn 2008.) In Section 2 when the fractal expression is
injected into the return process, it becomes clear that, when you calculate rj = Δχ/ΔT ,
you are in fact using the integral of the return process r(t). You simply can’t use r(t)
directly since r(t) is an infinitesimally volatile fractal. Without the averaging of the
integral, std(r(t)) becomes a very obscure concept. On the other hand, the size of ΔT
changes the outcome of std(r(t)), but does not affect S that much. When we make the
argument of scaling in the following sections, it is also very obvious that both R and S
scale with r(t). Therefore, I prefer to use the (R, log S) representation. In this paper,
two data sets are studied: 3 (1) the stock universe from the combined S&P1500 and
Russell 3000 indices (Abbreviated as SP+RS); and (2) the time series data of Dow Jones
Industrial Average (DJIA) index. The concept of a stock universe emulates the approach
in Chapter 5 of Fernholz 2002. The purpose of analyzing the shape and distribution
of the stock universe is related to the study of stochastic portfolio optimization (Lihn
2008). Each stock in the stock universe is a data point on the (R, log S) plane, calculated
from its daily closing prices (ΔT = 1) during a period of 800 trading days (T = 800,
that is, between 2/2005 and 4/2008). The reason to combine S&P1500 and Russell 3000
is to obtain the largest possible universe of representative stocks, but avoid the mixing
from other types of equities traded on the US stock exchanges (such as exchange-traded
funds, closed-end funds, royalties, and bond-like equities). Using stock indices is the most
straightforward way to accomplish this selection criteria. Stocks without long enough

1The stock price process does not return to its cental role until Section 7.
2The concept of a pair of parallel trend lines is irrelevant in the price based stochastic equation since

the the random walk diverges like a cone. But it is a valid concept in the return based equation.
3For those readers who are more interested in theoretical exposition than data analysis in the first

reading can skip the remaining discussion of this section.
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price history are dropped. There are 2336 stocks in the study.
The DJIA time series data is collected from the daily closing prices between 1934 and

2008, spanning 74 years. This data does not include dividends. DJIA rose from 100 to
12866, growing at about 6% annualized rate. There are 18687 trading days, partitioned
into 10-day intervals. That is, ΔT = 1 and T = 10. (However, when performing simula-
tion, ΔT = 1/80.) Each interval T generates a data point on the (R, log S) plane. This
data set includes several major bear markets, which allow us to study the effect of large
volatility events – a major interest of this paper. 4 Daily data is publicly available on
many finance websites and government websites. Our stocks and indices data are down-
loaded from Yahoo Finance website. The foreign exchange rate (FX) and Treasury data
are from Federal Reserve website.

4The S&P500 time series data is also available, but it covers a shorter history (since 1950), which
yields data density 37% less than that of the DJIA data. Thus S&P500 data is not presented in this
paper. Nevertheless the conclusion is similar. The two-dimensional analysis requires high data density
in order to produce good results. My experience suggests a minimum of 2000 data points is needed to
produce statistically significant analysis.
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Figure 1: The (R, log S) density plot for the stocks in the SP+RS Universe (S&P1500 and
Russell 3000). 2336 stocks are included in the universe. Each point is calculated from one
stock by its daily closing prices (ΔT = 1) during a period of 800 trading days (T = 800)
between 2/2005 and 4/2008. R is annualized by multiplying 250. The funnel shape is
clearly seen. The lines are the exponential funnel envelopes, R ∼ Fmean(R)(log S) ± 2 ·
Fstd(R)(log S), produced by the fits from Figures 6 and 7.
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Figure 2: The (R, log S) density plot for the larger All Equities Universe (about 4500
equities of all sorts). The funnel shape is very pronounced, very much like a tornado.

In the (R, log S) density plot for the SP+RS Universe (shown in Figure 1), the shape
of the distribution already looks more like a funnel than a circle. A circle shape is the
signature of a 2-D normal distribution, which is what you would’ve expected from the
classical Brownian motion models (See Figure 5). On the other hand, a funnel shape is
the signature of the cascade distribution. Thus the density plot clearly shows that the
market data has deviated from the normal distribution. The major visual observations
are:

1. The density plot is a funnel shape, instead of a circle shape.

2. Three main areas of excessive probability are observed: (1) In the lower tip near
the average return of the market; (2) In the upper, left corner, representing large
negative returns associated with large volatility; (3) In the upper, right corner,
representing large positive returns associated with large volatility.
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3. A small tendency to swing to the negative returns in the left upper half of the chart.
That is, the high volatility events are more likely to associate with large negative
returns on average.

To make more impression on the funnel shape, the (R, log S) density plot for the larger
All Equities Universe is presented in Figure 2 (but no further analysis is given here). A
wide range of equities are included in this larger universe: many of them are smaller, less
known, and with mixed stochastic characteristics. What’s striking is that the shape of the
two plots are consistent, only the latter is bigger and more dense. The shape is definitely
a funnel shape, looks very much like a tornado.

There are six ways to aggregate the 2-D distribution D(R, log S) in order to reveal
prominent statistical properties. First, we can aggregate the 2-D distribution into each
axis, resulting in two 1-D distributions:

1. The R distribution: D(R) =
´ R+ΔR

R

´∞
−∞ D(R′, log S) d log S d R′

2. The log S distribution: D(log S) =
´ log S+Δlog S

log S

´∞
−∞ D(R, log S ′) d R d log S ′

The probability distribution function (pdf) of the R distribution is presented in the
semi-log plot in Figure 3. It has visible skewness and kurtosis. The R distribution can be
fitted well with the skew cascade distribution Dη,β of η = 0.51, β = −0.12, as defined in
Equation (23). Tails are nearly straight lines in the semi-log plot. The term “skew cascade
distribution” is an abbreviation of “the skew form of the lognormal cascade of Gaussian
distribution”. The non-skew form was first introduced by Kolmogorov 1962 and further
investigated by Mandelbrot 1974. It is the invention of this paper to add the skewness
to it to model the covariance between return and volatility (see Equation (20)). In Beck
2005, the (non-skew) cascade distribution is also called “the lognormal superstatistics” in
the works related to the Largrangian turbulence.

A note on the numerical fitting procedure: As a custom when the cascade distribution
is presented, the pdf axis is presented in the log scale. It is obvious that the distribution
is very noisy in the tails. Therefore, to determine an accurate (η, β) is in fact a difficult
job. Simulation shows that the statistical skewness and kurtosis vary a lot when the data
density is low and do not converge until tens of millions of data points. This is typical
for fat tail distributions. Thus the several thousand data points we have from the market
data can only derive a very rough range of (η, β). Especially, it is nearly impossible to
determine the pdf in the far ends of the tails, although these so-called “outliers” are
very important events. Many authors have chosen to remove them to make the fit look
prettier, which I do not want to do here. Thus I have chosen to include the diff of statistical
skewness and kurtosis into the fitting algorithm as a compensation to the uncertainty of
the tail pdf.

The log S distribution is a normal distribution (Figure 4). Both the skewness and
kurtosis are small. it tells us that the volatility is best viewed in the logarithmic space.
This observation will be confirmed in Sections 6 and 7.
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Figure 3: The R distribution of the SP+RS Universe. The center is at ˜0.07 (7% annual-
ized return). The kurtosis is obvious. There is a small, but visible, skewness towards the
negative return. It is fitted with the skew cascade distribution Dη,β of η = 0.51, β = −0.12.
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Figure 4: The log S distribution of the SP+RS Universe fitted with the normal distri-
bution. Both the skewness and kurtosis are small. In particular, the skewness is nearly
zero.

The funnel shape is not what one would’ve expected from classical Brownian motion
models. One might suspect the distortion is caused by the somewhat peculiar combination
of (2) and (3). In order to prove the shape is not caused by the numerical methods, I
have performed extensive simulations on (a) the geometric Brownian motion equation of
dlog(X) = σdW (t); (b) the Langevin equation (4); (c) the SIBM equation (5) without the
higher order randomness. All of them produce nice looking circle shapes on the (R, log S)
density plot without any hint of becoming funnel shapes. Needless to say, they all produce
normal distributions on both the log S and R axes. Figure 5 shows a simulation of the
geometric Brownian motion that intends to produce similar distribution pattern for the
SP+RS Universe as in Figure 1. It is this intriguing funnel shape that attracted me to
dig deep into this issue.
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Figure 5: The Circle Shape of a Normal Distribution. A 6000-point simulation of the
geometric Brownian motion, dlog(X) = σdW (t), that intends to produce similar distri-
bution pattern for the SP+RS Universe as in Figure 1. σ = 0.02, ΔT = 1, T = 800. The
circle shape is distinctly different from the funnel shape as seen in Figure 1.

In addition to the two aggregate distributions mentioned above, there are four addi-
tional ways to produce cross-sectional views:

1. mean(R) across log S: Fmean(R)(log S) =
´ log S+Δlog S

log S
〈R(log S ′)〉 d log S ′

2. std(R) across log S: Fstd(R)(log S) =
´ log S+Δlog S

log S
std(R(log S ′)) d log S ′

3. mean(log S) across R: Fmean(log S)(R) =
´ R+ΔR

R
〈log S(R′)〉 d R′

4. std(log S) across R: Fstd(log S)(R) =
´ R+ΔR

R
std(log S(R′)) d R′

Each of these cross-sectional views delivers a unique message about the underlying mar-
ket data. Fstd(R)(log S) is used to characterize the exponent of the funnel shape as shown
in Figure 6. The data is fitted with the empirical formula in the format of std(R) ∼
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eb(log S+c), where b = 0.75 is called the funnel exponent. Once the exponent b is known,
Fmean(R)(log S) is used to characterize the skewness as shown in Figure 7. The data is fitted
with the empirical formula in the format of mean(R) ∼ a (log S − log Sm) eb (log S−log Sm),
where log Sm ≈ −1.31 is about (mean(log S) + std(log S)) (from the fit in Figure 4).
log Sm represents the volatility level above which the curve turns negative and rare catas-
trophic events occur. In Section 3, I will further develop the theory why the data in
Figures 6 and 7 are fitted with these empirical formulas. In Section 6, Fmean(log S)(R) will
be discussed in relation to the volatility smile; while the usefulness of Fstd(log S)(R) has
not been found.
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exp(0.75 x log S + -0.23)
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Figure 6: The std(R) curve across the log S axis, Fstd(R)(log S). The logarithm of std(R)
exhibits a linear relation with log S with slope of b = 0.75, where b is called the funnel
exponent. The exponential widening of std(R) forms the funnel shape.
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Figure 7: The mean(R) curve across the log S axis, Fmean(R)(log S). The skewness towards
the negative returns high volatility events becomes clear. The relation is characterized by
the empirical formula, a (log S − log Sm) eb (log S−log Sm), where a = −0.21 and b = 0.75
and log Sm = −1.31. Note that log Smis about (mean(log S) + std(log S)) in Figure 4,
where the curve turns negative.

In the DJIA time series study, the daily data is grouped into 10-day intervals, from
which the (R, log S) data points are calculated, as shown in Figure 8. We see the same
funnel shape, only in a different scale. The same numerical techniques are used to analyze
various aggregated distributions and cross sectional views. They are presented in Figures
9, 10, 11, and 12. A note is needed for Figure 10. Although the log S distribution is
mostly normal (judged by its skewness and kurtosis), the right tail is slightly longer. This
small tail of very high volatility (up to -2.5) is not captured properly by the normality
assumption. This will be discussed in Section 3.

We also observe that η ≈ 0.5 and the funnel exponent b ≈ 0.7 are similar in both fits.
This is not a coincident. Both η and b are from the variances of HORN (ε2 relative to δ2

and τc, see Section 3 and Table 1) and the variances are about the same, just in different
scales. In addition, even though it is very difficult to determine β in conjunction with η
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due to the ambiguous tail pdf, β has come out in proportion to the statistical skewness,
which makes sense intuitively.
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Figure 8: DJIA Index Time Series in 10-day intervals. The point on the (near log S =
−2.5) is the 1987 crash. The red lines are the exponential envelope, R ∼ Fmean(R)(log S)±
2 · Fstd(R)(log S), produced by the fits from Figures 11 and 12.

It is also interesting to note that, as shown in Figures 7 and 12, Fmean(R)(log S) curve
turns negative at log Sm ≈(mean(log S) + std(log S)). Large volatility events are more
often associated with negative returns on the average; while small volatility events with
positive returns. This seems to violate our common sense of symmetry – large volatility
should go either way (large +/- returns), not more on the negative side. But the asym-
metry is observed both in the DJIA time series as well as in the stock universe. (Note
that such skewness is not present in the US Treasury, see Appendix.) Such asymmetry
is manifested in the skewness of the tails in the R distribution. It is especially puzzling
that DJIA has grown about 120 folds during the 74-year period (excluding dividends),
yet there were more large drops than large rises.
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Figure 9: The R distribution of the DJIA index time series (in 10-day intervals), fitted
with the skew cascade distribution Dη,β of η = 0.50, β = −0.28. The center is at ˜0.06 (6%
annualized return). The kurtosis is significant due to several large events. The skewness
is also obvious. The leftmost point is the crash of Oct, 1987.
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Figure 10: The log S distribution of the DJIA index time series (in 10-day intervals),
fitted with the normal distribution. The deviation from the normal distribution is not
significant. But the skewness is not zero. The tail towards large log S is longer. This
small tail is not captured by the normality assumption properly.
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Figure 11: The std(R) curve across the log S axis, Fstd(R)(log S), in DJIA time series.
The logarithm of std(R) exhibits a linear relation with log S with slope of 0.67. The
exponential widening of std(R) forms the funnel shape.



2 THE SIBM EQUATION 19

m
ea

n(
R

) 
(x

25
0)

log S

1

0

-3-7 -6

-1

-5 -4

Mixture of Volatility and Return in DJIA Time Series

Fitted with
-0.46 x (log S + 4.65) x
exp(0.67 x (log S + 4.65))

data

fit

Figure 12: The mean(R) curve across the log S axis, Fmean(R)(log S), in DJIA time series.
The skewness towards the negative returns during high volatility events is clear. The
relation is characterized by a(log S− log Sm) eb(log S−log Sm), where a = −0.46 and b = 0.67
and log Sm = −4.65. Note that log Smis about (mean(log S) − std(log S)) in Figure 10,
where the catastrophic events begin to occur.

2 The SIBM Equation

The generalized scale-invariant Brownian motion (SIBM) equation is

dtr(Ω, t) =

(
∂r(Ω, t)

∂Ω

)
dt

τc

+ σ(Ω, t)dtW (Ω, t) (5)

where r(Ω, t) is the return density process; Ω is the scale dimension; τc is the characteristic
time of the system; σ(Ω, t) is the volatility density in the scale dimension, which can be
slowly time-dependent; W (Ω, t) is the Brownian motion process expressed in a density
form. The derivation of Equation (5) will be shown later in this section. The stock return
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process is defined as

r(t) =

ˆ ∞

−∞
r(Ω, t)eΩdΩ (6)

and the stock price process previously defined in (1) is refined as

χ(t) − χ (0) =

ˆ t

0

ˆ ∞

−∞
r(Ω, s)eΩdΩds (7)

In this context, the scale dimension Ω is the dimension for stochastic volatility, which will
become clear in Section 3. It controls exponentially the contribution of the return density
to the return and price by the eΩ term. However, as it will be demonstrated in Section
5, the SIBM equation can be recursively used to model higher order structures, which is
the reason that the arguments in this section is kept somewhat abstract.

The negative infinity in Ω corresponds to the infinitesimally small time scale. In-
tuitively speaking, the volatility density σ(Ω, t) injects varying degrees of volatility at
different scales and ∂r(Ω, t)/∂Ω converts the differences in the scale dimension into the
time dimension. The decay rate of the conversion is controlled by the half-time τc. The
autocorrelation is built into the equation via the term ∂r(Ω, t)/∂Ω/τc. The SIBM equa-
tion is so comprehensive that it is used to model both the stock return process and the
volatility process in this paper. As I will show in Section 5, although the autocorrelation
in stock return series is very small due to the highly arbitrage-free market, the auto-
correlation in the volatility of the return series is very significant, where τc will play an
important role.

Some readers may have noticed Equation (5) is a simple, yet very strange equation.
The classical geometric Brownian motion W (t) is a one-dimensional process. But here
W (Ω, t) is two-dimensional. At a given moment, W (Ω, t) produces infinitely complex
dr(Ω, t) along the Ω axis, which is then passed to ∂r(Ω, t)/∂Ω to be differentiated at next
moment t + dt. This is a new concept beyond today’s mathematical framework. But
consider this equation is a fractal equation that produce infinitely volatile r(t), it must
require a new kind of mathematics. For the time being, we will restrain our understanding
in a discrete numerical manner.

Let’s make an initial investigation on Equation (5). For illustration purpose, we first
assume σ(Ω, t) = 0. It is then very easy to verify that any function f(Ω+ t/τc) can satisfy
Equation (5). Thus, the equation is a simple transport equation: Once a pulse is injected
into the system, its shape is preserved and is moving towards −∞ in Ω space as time
progresses. Due to the eΩ term, this also means the pulse is dissipating into infinitesimally
small time scale. For example, Consider a pulse of a normal shape injected at t = 0:

r(Ω, t) =
C

κ
√

2π
exp

(
−(Ω + t/τc)

2

2κ2

)
(8)

where C is the strength of this pulse and κ is its “width”. The price process is the integral
of its moment generating function:

χ(t) − χ (0) = C

ˆ t

0

exp

(
− s

τc

+
κ2

2

)
ds (9)
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which converges to an asymptotic value Δχ = Cτcexp(κ2/2) as t→ ∞. It demonstrates
that τc is the half-time that controls for how long the pulse will influence future price
changes after its injection – similar to the half-time in radiology. Once the transport
term ∂r(Ω, t)/∂Ω is understood, Equation (5) in effect transforms the study of the return
process to the study of σ(Ω, t)dtW (Ω, t).

The term σ(Ω, t) is related to the volatility clustering. In Section 3 where the focus
is the solution of the static distribution, it is assumed to be time-independent, i.e., σ(Ω),
but follows the rules of the higher order randomness (HORN) hypothesis. However, in
Section 5 where the solution of the time series is considered, the higher order randomness
term H(t) inside of σ(Ω, t) is further developed into a time-dependent volatility process.

A naive attempt to simulate the time series generated from Equations (5) and (7)
by providing a normal pdf to σ(Ω) will show that the processes χ(t) and r(t) are indeed
fractals: χ(t) has infinitesimally small fluctuations, while r(t) is infinitesimally volatile.
Thus, we have overcome the major drawback of the Langevin equation. However, the
aggregated distributions on both R and log S axes are still normal. The crucial funnel
shape and the fat tail distribution are not manifested. What is missing is the HORN
hypothesis, which must be supplemented to Equations (5) and (7). It will be discussed
in Section 3. 5

The scale invariance in Equation (5) has three meanings: (a) The equation itself has
self-similarity feature that connects the effects between different scales; (b) The solution
it produces has fractal characteristics in the sense that the return process now can have
infinite number of frequencies whose amplitudes are random; (c) What happens in the
smaller scale, however complex, should cancel itself and appears invisible to the larger
scale, which I call self cancellation feature. These three aspects will be explored in this
section.

Some reader may question that these qualitative descriptions are not mathematically
precise. In this paper, we take an indirect approach to answer this question. In Section
7, we will show that the lognormal multifractal random walk model is a special case of
the SIBM model. Thus the SIBM model possesses a superset of scale invariant properties
of that multifractal model. What exactly it constitutes mathematically remains to be
studied. The reader is reminded that the definition of scale invariance is constantly
changing due to the incorporation of ever complex fractal concepts. See II of Bacry,
Kozhemyak, and Muzy 2008.

Equation (5) traces its root from Langevin equation, which I studied in great details
prior to the discovery of Equation (5) (Lihn 2008). Variations of the Langevin equation
has been adapted to model many mean reverting processes, such as the interest rate
process, volatility process, etc.. This is quite natural since the main focus is the return
process that has a trend. The Langevin equation has the advantage of (a) being simpler
to understand and (b) having analytical solutions. It is a one-dimensional equation (in
our case) and only has three parameters:

dr(t) = α(μ − r(t))dt + σdW (t) (10)

5For those readers who are interested in the SIBM application but not its derivation can safely skip
the remaining discussion in this section.
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where α is the viscosity in physics, or mean reverting strength in finance; μ is the terminal
rate of return that r(t) is oscillating around; σ is the volatility; W (t) is the standard
Brownian motion. Its statistical solutions are well known in the textbooks. (e.g. see
Karatzas 1991, Section 5.6, Example 6.8) As t→ ∞, we have r(t) ∼ N(μ, σ2/2α), where
N(·, ·) represents a normal distribution. Therefore, r(t) is oscillating around μ and these
“stochastic oscillations” cancel one another very much like a sine wave. The fact that r(t)
is oscillating around μ is very important. If there are oscillations, we natually ask what
the frequency is. It turns out to be the critical question that leads to the discovery of the
SIBM equation.

Let’s start with Equation (5) and reversely trace it back to the Langevin equation.
First we make a change of coordinate from the scale dimension to the frequency dimension:
Ω = −log ω, i.e., dω/ω = −dΩ. Equation (5) is rewritten to:

dtr(ω, t) =
ω

τc

(
−∂r(ω, t)

∂ω

)
dt + σ(ω, t)dtW (ω, t) (11)

where r(ω, t) is the return density process in the frequency dimension. And Equation (7)
is rewritten to

χ(t) − χ (0) =

ˆ t

0

ˆ ∞

0

r(ω, s) dω ds (12)

Be careful on the sign – a larger scale corresponds to a smaller frequency. Next we
discretize Equations (11) and (12) by writing r(ω, t) =

∑
i ri(t) δ(ω−αi) where αi> αi+1.

Smaller i corresponds to larger viscosity, and thus, higher frequency ω. Equation (12)
becomes χ(t) − χ (0) =

´ t

0

∑
i ri(s) ds which means the total return process is the sum of

many smaller return processes at different frequencies.
The next crucial step is to understand that, in the Langevin equation, the oscillation

is dominated by a single frequency; and the frequency is proportional to, and only to, the
viscosity f ≈ 2

3
π−3/2α if the “oscillation” is properly defined (Lihn 2008) 6 . σ and μ do

not affect f at all. This relation is discovered through my numerical analysis. Formal
solution from stochastic calculus remains to be worked. The conceptual breakthrough
that follows is that, instead of thinking α as a physical force, we should think it as a
frequency. And frequency is a coordinate by itself. Therefore, smaller Ω corresponds to
larger ω; and the larger ω is, the larger αi is; and lastly, the larger αi is, the smaller index
i is. The term −∂r(ω, t)/∂ω can be discretized to (ri+1(t) − ri(t))/Δα in which Δα > 0.
Thus we have

dri(t) =
αi

τcΔα
(ri+1(t) − ri(t))dt + σidWi(t) (13)

Equation (13) is a series of Langevin equations coupled together in which each return
process in the smaller scale oscillates around the next return process in the larger scale.

6For numerical purpose, a cycle of the oscillation is most conveniently defined as following. The start
time of a cycle is when r(t) first touches σ/

√
2α (which is the asymptotic standard deviation of r(t)).

Next, the half cycle is reached when r(t) first touches −σ/
√

2α. Then, one full cycle consumates when
r(t) subsequently touches σ/

√
2α. The program counts how many cycles there are during the simulation

and the frequency can be calculated for different parameters of (μ, α, σ). (It should be obvious to the
readers familar with the Langevin equation that μ is irrelevant here.)
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Thus the self-similarity is built into the equation by this coupling, which transforms the
classical dynamics equation into an equation capable of fractal expression. It is also
not hard to see that α originally represents a kind of physical interaction (viscosity),
but is transformed into the dimension Ω. To summarize, we can symbolize the fractal
transformation as:

−α → ∂

τc∂Ω
, r(t) →

ˆ ∞

−∞
r(Ω, t) d eΩ (14)

The first part looks like a quantum operator. The second part is similar to the Laplace
transform.

I must stress that the “derivation” makes no assumption on the specifics of the financial
market. It is a generic dynamics equation, just like its classical counterpart. There are
many other natural phenomena that have similar requirement on scale invariance. The
key of discovering a scale-invariant equation is to find out what is the major process that
requires the scale invariance. Once that is identified, it is then possible to transform
the classical equation expressing that process to the generalized self-similar one. This
is done by transforming a classical parameter into the scale dimension, identifying the
recursive pattern, and incorporating the coupling between the ordinary dimension and
the scale dimension. In our case, the recursive process is the return process and the
classical parameter is the viscosity. The scale is with regard to the time scale of price
fluctuation. I hope that the methodology can shed some light to other fields of science to
conquer scale invariance.

3 The Higher Order Randomness Hypothesis

In order to reproduce the statistics of the market data, especially the cascade distribution
in the R axis, we not only have to assume σ(Ω) is normally distributed (pdfN), but also
the position of σ(Ω) is perturbed by another normal process H. That is,

σ(Ω) ≈ Φ · pdfN

(H, δ2
)

and

ˆ ∞

−∞
σ(Ω)dΩ = Φ (15)

H ∼ N
(
0, ε2

)
(16)

, where Φ is the total strength of σ(Ω) and δ2, its variance. ε2 is the variance of H, which
is typically a fraction of δ2, otherwise the cascade structure will diverge badly. One must
note that σ(Ω) is a distribution density, not a random process. It influences the weight of
the random process density, W (Ω, t). However, H is a normal process in its own space.
When calculating the statistical properties for an observable O(χ), we must follow the
sequence of

〈O(χ)〉 =
〈
〈O(χ(t))〉(σ,W )

〉
H

(17)

In the computational order, averaging on H is applied last. This particular sequence leads
to the hypothesis of the higher order randomness (HORN) for H. Intuitively speaking,
H is the randomness that operates on the volatility density σ(Ω), which then controls
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the weight of the 2-D randomness W (Ω, t). Since H operates on σ(Ω) who lives in the
scale dimension, its effect to the physical world is exponential due to the eΩ term. (Note:
The author was inspired by the concept of higher order function in Haskell programming
language, which is a function that operates on other functions.)

This hypothesis results in heteroskedasticity in two ways: (1) In the stock universe
study, the heteroskedasticity occurs among different stocks, that is, each stock has its own
characteristic HORN, which makes each behave drastically different from others in terms
of their long-term volatility; (2) In the time series study, heteroskedasticity means H is
a slower time dependent volatility process, that is, H(t), which is also a mean reverting
process like r(t). How H depends on time will be studied in Section 5. Our focus in this
section is to solve the static distribution.

We know that the addition of two normal processes is another normal process. Thus,
it is intuitive to guess that the outcome of 〈χ(t)〉(σ,W ) is a normal distribution, which is
confirmed through simulation. However, the combination with H is not additive, it is
exponential-multiplicative, as we shall see soon. The exponential-multiplicative combina-
tion of H with the underlying normal processes leads to the lognormal cascade distribu-
tion.

The assumption of normality in Equations (15) and (16) is somewhat arbitrary. We
rely on the central limit theorem for this assumption. As noted in Mandelbrot 1974,
only in the extreme case of degeneracy, we have a lognormal cascade. Other cases would
either produce a quasi-lognormal cascade, or a totally different distribution. In our study,
the extreme case is equivalent to a large sample size (number of stocks or intervals)
and/or over a long enough history. Otherwise, we typically will not get normality on the
log S distribution, which consequently invalidates the normality assumption of H (see the
argument on funnel formation below). As is shown in Figure 10, the log S distribution
is largely normal, but indeed has a small tail towards high volatility. If data from 1928-
1933 were included, the skewness would’ve been even more significant. The normality
assumption is preferred here so that we can generate the lognormal cascade distribution as
the first order solution. A more sophisticated second-order model will have to incorporate
the skew cascade distribution for HORN (log S is estimated at η = 0.14, β = 1.5 for DJIA
data, Figure 10). Ignoring these ”outliers of the outliers” in our model will cause a small
underestimate of very high volatility events, which is reflected in a smaller kurtosis of the
simulated R distribution from the model (5.8 vs 4.0, cf Figure 9 and Table 2).

Once the assumption of H is understood, we can investigate the interesting transla-
tional property of Equation (5). It not only helps us understand the complexity of the
SIBM equation, but also provides a clever way of deriving the cascade distribution. Ac-
cording to Equation (5), if σ(Ω) is translated by ΔH, its solution r(Ω, t) should also be
translated by ΔH in Ω. Going through Equation (7), this translation causes the log-price
change of

Δχ

χ
= eΔH (18)

However, this change will go into R and log S in different fashions: R is multiplied by
eΔH while log S is added by ΔH. We know through numerical analysis that, when ε → 0
in Equation (16) , H becomes a delta function and the distributions of both R and log S
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are both normal. We call them undisturbed distributions – undisturbed by HORN. But
when ε is not zero, H injects randomness into the system by moving the center of σ(Ω)
by ΔH. Through numerical simulation we know that now the R distribution becomes a
fat tail distribution while the log S distribution remains a normal distribution. The case
for log S is simple – the addition of two normal distributions remains normal. However,
The case for R is not trivial. The fat tail distribution is generated by the product of
the first normal distribution from σ(Ω) and W (Ω, t), and the exponential of the second
normal distribution from H, according to Equation (18). Thus, we can define the cascade
distribution as:

D(c)
η = {x = a × eb, a ∈ N(0, 1), b ∈ N(0, η2)} (19)

, where η is a combination of ε, δ, Φ, and τc, whose analytical form remains to be worked
out. However, we do know that, when ε → 0, so does η, and b becomes a delta function.
Thus,D(c)

η is reduced to a normal distribution, which is D(c)
0 in our notion. Nonzero η,

which is characterized by the HORN effect, becomes the shape factor for R. Thus η
directly impacts the fat tail risk.

Numerical analysis shows that the pdf of D(c)
η is very similar to that of the Levy

symmetric α-stable distribution. However, the two deviate in the tail structure (Mantegna
and Stanley 1995). Levy distribution has infinite variance, while the cascade distribution
has finite variance, which is more physically acceptable. Thus efforts have been made to
truncate the tail of Levy flight by Mantegna and Stanley. Despite the tail discrepancy,
I have tried to build the relation numerically between η in D(c)

η and α in Levy α-stable
distribution. The result is shown in Figure 13. Amazingly the relation itself can be
fitted by yet another α-stable distribution (α = 0.724) with high precision. This seems
to indicate there is a deep mathematical connection between the two distributions.
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Figure 13: The relation between η in D(c)
η and α in Levy α-stable distribution. Each point

is obtained by a simulation of D(c)
η = {a×eb} (Equation (19)) with 20 million data points.

The data set can be fitted by Levy α-stable distribution (α = 0.724) with high precision.

The exponential-multiplicative law also helps us understand the formation of the fun-
nel shape, without the need of cranking numbers or analytical solutions. The asymmetry
of the translational property causes the undisturbed normal distribution to be bent hori-
zontally on the (R, log S) plane. By overlapping a few of them, one can easily construct
the funnel shape. Figuratively speaking, assume ε = 0 and we have a normal distribu-
tion at point (0, log S0) with the “width” of R0 (think “width” as 1 or 2 times of the
standard deviation). A noise from H causes a translation in σ(Ω). Assume this noise
translates log S0 to log S, then the ”width” in R becomes R0e

b (log S−log S0) where b is the
funnel exponent. This exponential relation defines the envelope (or edge) of the funnel,
as illustrated in Figure 14. Therefore, we conclude that the funnel shape in Figures 1
and 2 is the signature of the cascade distribution caused by Equation (5) and the HORN
hypothesis (Equations (15) and (16)). This is the reason the data sets in Figures 6 and
11 are fitted with the form eb·log S.
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Figure 14: Illustration of how the funnel shape is formed by the higher order randomness.
The undisturbed normal distributions are bent wider in the high volatility regions and
are squeezed in the low volatility regions, as described by width(R) ∼ R0e

b(log S−log S0).
Therefore, the probability weight is pushed towards the three corners of the funnel. This
causes the R distribution to become a cascade distribution, while the log S distribution
remains a normal distribution.

A related topic is that log width(R) − log R0 = b (log S − log S0). The edge relation
between log R and log S is linear! This diverging behavior is sharply different from that of
the normal distribution. In the normal distribution, we expect the high volatility events
are more likely to happen near R = 0 and very unlikely at |R| � 0. But when the HORN
sets in, more events are happening along the edge where |R| � 0. When looking at the
density plot with a funnel envelope in mind, you wouldn’t be too surprised by the Black
Monday of 1987 and other large events in Figure 8.

Another important observation is that, the change of r(t) caused by a translation
in σ(Ω) can also be accomplished by increasing the strength of the volatility density
exponentially (Φ in Equation (15)). That is, Ω → Ω + H is equivalent to Φ → Φ · eH.
Thus the position of σ(Ω), aka H, and its strength Φ are not two independent parameters.
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To simplify the numerical process, I prefer to fix Φ and also keep H centered at zero.
To model the covariance between high volatility and large negative return, the first-

order leakage term from H is introduced as:

dW (Ω, t) → dW (Ω, t) + (θ · H + g) dt (20)

. Therefore, the complete SIBM equation for the stock return process is:

dtr(Ω, t) =

(
∂r(Ω, t)

∂Ω

)
dt

τc
+ σ(Ω, t) [ dtW (Ω, t) + (θ · H + g) dt ] (21)

, where θ is called ”the skewness parameter” (θ < 0) and g is the constant growth
term (g > 0) to compensate the negative skewness of θ (Otherwise the market won’t
grow). Due to the no-arbitrage criteria, τc should be small for the stock return process.
σ(Ω) = Φ · pdfN (H, δ2) and H ∼ N (0, ε2) still holds.

In the stock universe scenario, θ is related to the default risk since corporations do
fail – sometimes very drastically. And there is no reason why a stock index can’t fail,
especially in the emerging markets or countries at war. When H swings to a large positive
value, it not only amplifies dW exponentially, but also produces a negative contribution
to dW through θ ·H, which twists the funnel shape towards the negative R. Since H has
long cycles (see Section 5), θ · H will also persist for some time. This indicates that, not
only large volatility clusters, but also large negative returns. On the other hand, when
the volatility is small, g will provide a small positive growth for the market in the long
term. This is the reason the data sets in Figures 7 and 12 are fitted with the empirical
formula (log S − C) · eb (log S−C).

The σ(Ω) (θ · H) term produces the following skew distribution:

D(s)
η = {x = b · eb, b ∈ N(0, η2)} (22)

, which also reduces to a normal distribution when η approaches zero. The combination
of D(c)

η and D(s)
η defines a new kind of skew cascade statistics, which has yet been studied

in any literature:

Dη,β = {x = (a + β · b) · eb, a ∈ N(0, 1), b ∈ N(0, η2)} (23)

, where η is the shape factor and β is the skewness factor. (The effect of g is to shift the
mean of a, similar to what β · b does to a, except it is a constant shift. So g shifts the
entire Dη,β. To keep things simple, it is not included in Dη,β.) The importance of Dη,β can
not be stressed more, since it is the “canonical” distribution for the financial return series
according to the SIBM model in this paper. The results of Dη,β fits have been shown in
Section 1. They are by far the best fits among the various distributions I have explored.

For those who are not familiar with the shape of Dη,β , Figure 15 shows several typical
distributions, both symmetric ones and skew ones. They are rescaled and shifted to
demonstrate how the shape evolves with various (η, β). An intuitive memoization is that

the log(pdf) of Dη,β=0 (i.e., the non-skew D(c)
η ) generally looks like −abs(x)n except that

Dη,β=0 has a round top near x = 0. When η = 0, we know n = 2. By simple try and
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errors, I found when η = 0.2, n ≈ 1.68; when η = 0.4, n ≈ 1.1 (almost linear); when
η = 0.6, n ≈ 0.75 (sub-linear); when η = 1.0, n ≈ 0.4 (nearly

√
x). In both Figures 3 and

9, η is close to 0.5. So it is no wonder the tails looks linear (n = 1). Again this is only
an intuitive memoization. The exact tail power law of Dη,β remains to be worked out
mathematically. It is also worth noting that the kurtosis increases exponentially with η.

There is significant implication if the log(pdf) of the tails is indeed linear, n =
1. Assume pdf(R) dR ∼ e−c RdR (consider R > 0 for now). By definition, R =
log(X(T )/X(0))/T . Let’s define the return of stock price (without logarithm) rX =
X(T )/X(0), then dR = drX/rX T . so pdf(rX) drX ∼ r−p

X drX , where p = c/T . Thus the
price return r follows a power law. Similar tail power law argument is found for Heston
model in Dragulescu and Yakovenko 2002. However, in our case without an analytical
solution, the tail power law is only obvious when η ≈ 0.5. In Section 5 when we dis-
cuss the time series output, Figure 17, it is pointed out that the shape factor evolves:
η → 0, as T → ∞. So even if there is a tail power law in the quasi-normal distribution as
η → 0, it can only exist in distant rX .
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Figure 15: Illustration of the Cascade Distribution, Dη,β. The log(pdf)’s are rescaled so
that they overlap at x = 0 and ±10 in order to demonstrate how the shape evolves with
(η, β). The top 4 curves are symmetric, β = 0, and η = 0.2, 0.4, 0.6, 1.0. The skewness
is demonstrated in the bottom 4 curves with η = 0.5 and β = 0.0,−0.3,−0.6,−0.9. They
are shifted down by 4 for clarity. Note that the small ripples near the round top at x = 0
are simulation noises, not real structures.

To summarize, there are six parameters in this SIBM model: (1) ε2: the variance of H;
(2) δ2: the variance of σ(Ω); (3) Φ: the strength of σ(Ω); (4) τc: the characteristic half-
time; (5) θ: the skewness parameter; (6) g: the growth constant. These parameters must
produce the following on the (R, log S) plane: (1) the shape of the cascade distribution in
R; (2) : the scale of the R distribution; (3) the mean of the normal distribution in log S;
(4) the variance of the log S distribution; (5) the mean of R; (6) the exponent b of std(R)
across the log S axis; (7) Sm: the asymmetry of mean(R) across the log S axis. There are
many parameters in this model and the SIBM equation is computationally heavy. One
must start with the dominant parameters first. My suggestion is to leave θ and g last to
consider since they are the finer structures compared to others.

A simulation on a 800× 30 (t, Ω) lattice is performed to reproduce the static distribu-
tions for both the SP+RS Stock Universe and DJIA time series. The input parameters are
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listed in Table 1. The input is tuned manually due to the limited computing resource to
traverse the entire parameter space. With 16000 iterations, the model is able to produce
parameters describing the (R, log S) distributions within 10% error, as listed in Table 2.
The simulation takes about 6 hours with GNU Octave software on a 1.8GHz Intel Duo
Core CPU (Octave does not use both cores in one shell). Consider the cascade distri-
bution typically requires more than 10 million iterations to converge, it is a tremendous
challenge on computing resource to traverse the entire parameter space and obtain high
precision fits, which I am constrained from.

Table 1: Input parameters for the simulations. Both sets of input are very similar. This
implies the underlying dynamics is similar.

Parameter SP+RS DJIA

(t, Ω)
Size

800 × 30 800 × 30

T 800 days 10 days

ΔT 1 day 6 mins

ε 0.77 0.76

τc 4 4

δ 5 5

Φ 2.6 2.6 · e−3

θ −0.008 −0.008

g 0.009 0.004
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Table 2: Output from the simulations of 16000 iterations on a 800×30 (t, Ω) lattice. The
model is capable of simulating the actual systems within 10% of error.

Parameter SP+RS DJIA

mean(R) 0.068 0.066

std(R) 0.21 0.91

skewness(R) −0.64 −0.86

kurtosis(R) 2.59 4.02

η(R) 0.47 0.52

β(R) −0.15 −0.30

mean(log S) −2.1 −5.1

std(log S) 0.46 0.53

b 0.76 0.75

log Sm −1.3 −4.75

Lastly, I want to make a comment on the Markowitz-style portfolio optimization and
the funnel shape since that was my original intent of studying the funnel shape. The
readers may have noticed that the skewness term (θ · H + g) has caused the right edge
of the funnel shape to become more like a straight line, instead of an exponential curve,
in Figures 1 and 8. In my opinion, this is quite important to the portfolio optimization.
Optimization, as prescribed in the modern portfolio theory, is only possible when there are
tangential points on the right edge (efficiency frontier). This is true for the circle shape,
but not so for the funnel shape. Some years are more peaceful than others. During those
peaceful years, portfolio optimization can do wonders and can even be leveraged upon.
But during turbulent years when the funnel shape is very prominent, tangential portfolio
is somewhat an illusive concept and the exponential volatility change from HORN can
shipwreck portfolios of insufficient risk margin. Thus the dynamics of the stock market is
truly amazing in the sense that different forces sum up to produce a nearly straight line
over the long term. Not very good for optimization, but also not totally impossible!

4 The Funnel Shape, Mr. Market, and Margin of

Safety

Successful investors over the decades have observed many market anomalies and issued
many warnings in their writings. And there are many such warnings in the masterpiece
of Benjamin Graham, The Intelligent Investor (Graham 1973). In Chapter 8, p. 106, he
said, “... The stock market often goes far wrong, ...”. In Chapter 20, he summarized
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his lifetime investment experience in three words - MARGIN OF SAFETY (All letters
were capitalized), and at the end of that chapter, he concluded the book, “To achieve
satisfactory investment results is easier than most people realize; to achieve superior
results is harder than it looks.” Graham invented the legendary character of Mr. Market
as the mental attitude investors should have towards market fluctuation, Mr. Market was
elaborated by Warren Buffett (Buffett 1987) as: “The poor fellow has incurable emotional
problems. At times he feels euphoric ... When in that mood, he names a very high buy-
sell price... At other times he is depressed... On these occasions he will name a very low
price.” This led some investors to jokingly call the stock market schizophrenic or mood-
swinging. In this section, I attempt to explain these empirical statements in light of what
is found in this paper.

First, from the statistics point of view, nothing is wrong. The data points just happen
based on the statistical law governing them. But why would investors “feel” the market
often goes far wrong? Now we know that the statistical law governing the stock market
is larger than the normal distribution. It is a superset of the normal distribution. It can
have a large kurtosis and skewness beyond the imagination of a ”normally distributed”
mind. That makes people “feel” that unlikely events happen more often that “expected”.

Secondly, the schizophrenic characteristics of Mr. Market can be understood by the 2-
D funnel shape distribution. There are three areas of ”distortion” in this shape compared
to the circle shape of a normal distribution. There are more probability weights in: (a)
the lower center tip of the funnel; (b) the upper right corner of the funnel; and (c) the
upper left corner of the funnel. Mr. Market’s mood swinging is the mental picture of
the statistical events happening in (b) and (c). If these events are just part of statistics,
we wouldn’t mind too much. But if an investor is deceived to believe these exceptionally
large swings are for real (“real” means the trend will persist indefinitely), then investment
loss is inevitable. Just as their occurrences are from excessive probability, the chance of
continuing the unlikely trend is even smaller. Remember that Langevin equation is a
mean-reverting equation.

On the contrary, how do we understand the statement, “To achieve satisfactory invest-
ment results is easier than most people realize”. The readers probably already realize that
is the reflection of (a). Often times the market is calmer than people would’ve thought.
Stocks and indices travel to the low volatility region more often than they would “nor-
mally” do. The unattractive part of these events is that they also coincide with a low
return period. Here ”low” is compared to the large swings investors are accustomed to.
Notice mean(R) �std(R) in Figures 3 and 9. Only patient investors can profit from the
small presence of mean(R). Investors longing for “superior” investment results pay little
attention to (a). Instead, they frequently visit (b) and (c) with exactly opposite actions
required to profit from those situations.

Therefore, the attitude of margin of safety is even more important in light of the funnel
shape. Large boom and bust cycles are inevitable, yet the market is always growing in
the aggregate. The long cycle of HORN has tested many investors sourly in the past. As
Benjamin Graham has said, temperament is crucial in the success of investing.

Outside of financial markets, the concept of Mr. Market and margin of safety is
also useful in light of the funnel shape. It has been observed that weather conditions and
traffic patterns also resemble the fat tail distribution (e.g. Ausloos and Petroni 2007; Goh
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and Barabasi 2008). Therefore, designers of facilities required to endure severe weather
conditions and excessive traffic loads must pay special attention to the Mr. Market events
in their respective disciplines.

I shall conclude this discussion with a humor. Don’t blame the poor fellow Mr. Market.
He isn’t so strange after all. His shape is just not a circle, but a funnel!

5 Volatility Clustering and the Time Series Analysis

So far our model has explained the static distribution of the DJIA time series satisfactorily,
in the form of the skew cascade distribution. For the purpose of solving static problem, it
is sufficient to assume H is a constant across the time interval (10 days in our case) and
varies randomly for each interval. However, in order to facilitate the time series analysis,
we must assume the HORN term is time dependent, aka H(t). So the question is: What
kind of stochastic equation governs H(t)?
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Figure 16: DJIA Time Series Autocorrelation. The cross line shows the mean-detrended
autocorrelation of the 1-day log-return series, which is basically zero. The star line shows
the autocorrelation of the absolute of the same return series, A(ti). There is significant
autocorrelation in small time intervals, decreasing linearly in log(t). It diminishes at about
700 days. The circle line shows the simulation result from the two-SIBM volatility model.
The model captures the major autocorrelation features and agrees with the market data
within 10% error.

The important clue comes from the autocorrelation analysis on the market data. The
autocorrelation in the nature was discussed extensively in Chapter IX of Mandelbrot
2004. Figure 16 shows the mean-detrended autocorrelation A(t) of the absolute 1-day
log-returns (which characterizes the volatility) for DJIA time series from 1934 to 2008.
The autocorrelation of the 1-day log-returns is also shown as a reference. The mean-
detrended autocorrelation is calculated as following. The daily price data is labeled as
Xj where j loops through all trading days in the range. We then calculate the 1-day log-
returns rj = log(Xj+1/Xj). The array {rj} and its absolute {abs(rj)} is mean-detrended
(that is, the function detrend(arr, 0) in GNU Octave) and then fed into the autocorrelation
function (that is, the function acorf(arr, days) in GNU Octave. Function acorf returns
an array of autocorrelation from 1 to days.). Thus we can abbreviate the autocorrelation
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computation as A(t) = acorf(detrend({abs(rj)}, 0), t).
It is obvious that the log-returns does not show any autocorrelation (except a small

amount at t = 1). This is expected due to no-arbitrage criteria. But the absolute
log-returns shows very obvious autocorrelation in A(t). A(t) is flat at about 0.2 below
10 days and gradually vanishes to zero at about 700 days. In between, A(t) shows an
approximately linear relation with logarithm of time log(t). 700 days is about 3 years,
which characterizes the duration of several major bear markets in the past. To summarize,
DJIA time series exhibits four aspects of volatility clustering: (1) a very strong volatility
correlation in small t; (2) volatility correlation does not change much below 10 days; (3)
a very long memory of volatility, up to nearly 700 days; and (4) A linear log(t) decay
indicates an exponential time scale is involved. This linear relation turns out to be quite
a challenge in modeling as is shown later.

The fact that A(t) ≈ 0.2 at t ≤ 10 (days) is impressive. This indicates volatility
persists at the same level over many days before transitioning to another level. The
transition must happen quite abruptly to produce a high A(t ≈ 0). Since in our model
the level of volatility is controlled by H(t), it must exhibit this behavior as well. This is
consistent with our previous description of HORN.

The second fact that A(t) diminishes after 3 long years is also very impressive. Such a
long memory matches our common experience of market cycles, but it can be devastating
to inexperienced market participants and short sighted financial models. (There could be
even longer cycles, but they are not distinguishable in the data. With 74 years of data,
it is hard to detect any longer cycles with good statistical significance.)

During my numerical experiments, the major finding is that the volatility autocorrela-
tion A(t) is simply a rescaled autocorrelation of H(t), that is, A(t) ≈ c·acorf({H(tj)}, t), c ≈
0.2 (The mean of H(t) is already zero and H(0) ≈ 1). Based on this finding, the focus
is simplified to model H(t) that can produce the shape of the observed autocorrelation
curve. Intuitively speaking, this finding is easy to understand. In Section 3 when I ex-
plained how the funnel is formed by moving ΔH, the relation between changes of ΔH
and Δ(log S) is linear. And log S describes the price volatility. Therefore, there is a
direct statistical relation between H and the observed price volatility (in this case, the
mean-detrended absolute log-returns).

Historically, the volatility process has been modeled with variations of Langevin-style
equation. Since we have a better choice, it is natural to use it here. We can model H(t)
with the SIBM process:

dtH(ΩH, t) =

(
∂H(ΩH, t)

∂ΩH

)
dt

τH
+ σH(ΩH)dtWH(ΩH, t) (24)

where H(Ω, t) is the volatility density process; ΩH is the scale dimension; τH is the half-
time of the volatility decay; σH(ΩH) is the volatility of volatility density in the scale
dimension (for simplicity, we have assumed it does not depend on time); WH(ΩH, t) is the
Brownian motion process expressed in a density form. And the volatility process H(t) is
defined as (similar to the stock return process)

H(t) =

ˆ ∞

−∞
H(Ω, t)eΩdΩ (25)
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. We again assume the term σH(ΩH) is distributed according to a normal distribution:

σH(ΩH) ≈ pdfN

(
0, δ2

H
)

and

ˆ ∞

−∞
σH(Ω)dΩ = ΦH (26)

. It turns out that, in order to fit the broad linear region between 10 and 700 days in the
autocorrelation data, the model requires the superposition of at least two SIBM processes
with different τH:

H(ΩH, t) = H(1)(ΩH, t) + 0.26 · H(2)(ΩH, t),

τ
(1)
H = 20 days, τ

(2)
H = 300 days

(27)

, where ΦH and δ2
H in H(1) and H(2) are kept the same (chosen arbitrarily) since they

don’t matter in this case (because we don’t model the HORN terms for H). The most
important parameter that affects the autocorrelation is the half-time, τH. The first half-
time τ

(1)
H is about a month, and the second one τ

(2)
H is slightly more than a year. τ

(1)
H agrees

with the relaxation time 1/γ = 22 days in the Heston Model according to Dragulescu and
Yakovenko 2002. It is interesting to note that major volatility changes occur at these two
dominant calendar intervals. Based on what we know about the financial planning cycles
in corporations and governments, this is not surprising.

Once the autocorrelation of H(t) matches correctly with that of DJIA, we can feed
H(t) (variance rescaled to ε2) into the 10-day static model we built previously. Since
the autocorrelation below 10 days does not change much, it is safe to assume the 10-day
static model can be the basis to simulate the time series for longer durations. A major
reason for the reuse is that such approach allows us to easily calibrate the time dependent
simulation against the static one to avoid programming errors, although we lose a little
accuracy in doing so. The result is quite satisfactory. 30000 iterations are performed to
generate a 1200-year simulation, which yields 16 times better resolution that the 74-year
of DJIA market data. The simulated volatility autocorrelation is shown by the circle line
in Figure 16. It matches the market data within 10% error. The simulated R distribution
is compared to the DJIA data against 4 time intervals: T =10, 40, 160, 320 days in Figure
17. The simulated lines match the DJIA data (in dots) satisfactorily. This indicates our
method of calibrating H(t) can capture the major features in the return distribution and
the volatility clustering – extending a long time scale (30x). Therefore, we are confident
that the SIBM model we obtained so far can be used to simulate other aspects of stochastic
properties in the DJIA time series. This is exactly what we will explore in Section 6.

The longer the time interval T is, the closer the R distribution is to a Gaussian
distribution. This phenomena is explained as following. For a Brownian motion system,
the scaling law dictates that mean(log S) increases linearly with log (T ). (This can be
verified with a simple numerical simulation with different T .) On the other hand, the
variance of averaged H(t), i.e. 〈H(t)〉T , remains unchanged even when T increases. So
the perturbation Δ(log S) caused by it is also unchanged. Therefore, the HORN effect
from H(t) (relative to the increasing mean(log S)) decreases as T increases (see Equation
(17)). This causes the R distribution converge to a Gaussian distribution in the long
term, that is, η → 0, as T → ∞.
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Figure 17: The R distribution of the simulated time series, against 4 time intervals:
T =10, 40, 160, 320 days. The DJIA data are plotted as the dots and the simulated data
are the solid lines. The duration of the time series simulation is 1200 years, 16 times
longer than the actual DJIA time series in order to obtain a smooth curve. The simulated
lines match the DJIA data satisfactorily, reflecting the good calibration of H(t). Notice
the evolution of the shape: η → 0, as T → ∞.

The reader may have noticed a recursive pattern here. The stock return process is a
SIBM which is exponentially controlled by its HORN. Yet the HORN is a process that
follows another SIBM, which is controlled by its own HORN. This is another important
fractal structure in the SIBM system.

The reader may wonder in what way the volatility model for H(t) is related to the
VIX index (CBOE Volatility Index). Intuitively speaking, the volatility model for H(t)
can be built out to model VIX. However, as the funnel plot in the Appendix shows,
VIX itself has both the HORN component (ε �= 0) and the leakage component (θ > 0),
albeit small. This coincides with our previous discussion that H(t) should have a small
positive skewness. Therefore, our normally distributed H(t) model is only a first order
approximation. A more sophisticated second order SIBM model for H(t) should include
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its HORN component and the leakage term since we know that the volatility skew also
exists in the VIX options. The relatively short history of VIX also posts a challenge to
determine exactly how large the HORN component and the leakage term should be.

It is also not ideal to require two SIBM equations to model the volatility process. It is
an open question whether it is possible to assume τH depends on ΩH, thus H(1) and H(2)

can be folded into a single SIBM equation.

6 A Possible Approach to the Volatility Surface

As is commonly known, the success of the Black-Sholes model (Black and Scholes 1973)
is that it parsimoniously describes the option prices. But ever since its advent, the model
is flawed in that its implied volatility σBS varies with strike price and maturity. These
variations examplify the deviation from its normality assumption. The collection of these
variations form a two-dimensional surface in price and time, called the volatility surface.
The study of the volatility surface is central to the options pricing business. Although
the surface is somewhat time-dependent, its shape does not really change that much over
time (Gatheral 2006, p. 68). This indicates the general shape of the surface is a reflection
of important stochastic properties governing the underlying time series.

As noted by Gatheral 2006, p. 31, the implied variance (σ2
BS) of an European option

can be understood intuitively as a probabilistic integral of the local variance along the
most probable path conditional on the stock price at expiration being the strike price.
That is, the implied variance is some kind of average on the local variance at a fixed R
during the time interval T if we make the analogy of R∼(strike price − current price)/T
and T∼maturity. Since log S is also a (simpler) expression of volatility, this inspires me
to seek a similar expression of volatility surface in the (R, log S) framework.

The most outstanding characteristics of the volatility surface is the so-called volatility
smile and/or the volatility skew, which is the shape of the implied volatility curve plotted
over a range of the strike prices at a particular maturity. In the case of SPX implied
volatility, the curve of short maturity looks like a smile; that is, lower volatility when the
strike prices are near the current price, and higher volatility when strike prices are away
from the current price. On the other hand, the curve of long maturity shows a consistent
tilt, called the volatility skew. That is, higher volatility when the strike prices are lower
than the current price, and lower volatility when the strike prices are higher.

In this section, I propose to examine the volatility smile/skew in term of the (R, log S)
cross sectional plot. The volatility smile/skew is basically the mean volatility cross section
over the R axis, that is, Fmean(log S)(R) mentioned in Section 1. The skewness is produced
by the combining effect of the kurtosis and the skewness of the underlying distribution.
The kurtosis is the result of HORN, which is reflected in the cascade distribution and the
funnel shape. The skewness is the result of the leakage term, θ · H.

In Figure 18, the Fmean(log S)(R) curve of the DJIA time series is plotted against 4
time intervals: T =10, 40, 160, 320 days. The DJIA data are plotted as the dots and the
simulated data are the solid lines. The simulation is the same as in Figure 17. There is
considerable noise in the DJIA data, but once we plot the simulated curve on top of it, the
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smile/skew become clear. The shape of the smile/skew coincides with the observed SPX
option data in Gatheral 2006 (p. 38). Notable features are (1) The skewness is observed
in all time intervals; (2) It is a smile in shorter time intervals; (3) The smile turns into a
skew in longer time intervals.

If indeed the model presented so far can explain the volatility smile/skew, it indicates
that the volatility characteristics of the options market simply picks up the trends hidden
in the underlying stock market. And the volatility process, such as H(t) demonstrates,
lives in the exponential space. Gatheral 2007 has suggested that modeling volatility
process as a double lognormal process 7 fits the volatility smile/skew data better than
other models and eases the hurdle for numerical simulation. As he noted, “With the
Ornstein-Uhlenbeck formulation, log(ν) (ν is the variance) is normally distributed with
easy expressions for the mean and variance, so exact big-step Monte Carlo becomes pos-
sible”. This statement agrees with the exponential-multiplicative law and exclusive use
of normal distributions discovered in the SIBM model.

7Gatheral pointed out that the double lognormal model is from Example 3 of Buehler 2007.
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Figure 18: The (R, log S) Skew/Smile in the DJIA time series and simulation.
Fmean(log S)(R) is plotted against 4 time intervals: T =10, 40, 160, 320 days. The DJIA
data are plotted as the dots and the simulated curves are the solid lines. The duration
of the simulation is 1200 years, 16 times longer than the actual DJIA time series in or-
der to obtain a smooth curve. The shape of the skew/smile coincides with the volatility
smile/skew observed in SPX option data in Gatheral 2006, p. 38.

7 Relation to Multifractal Random Walk Model

The lognormal cascade is profoundly related to the multifractal theory. Mandelbrot has
expressed that there is an inescapable need to incorporate fractal in finance (Mandelbrot
2005), Mandelbrot, Calvet, and Fisher 1997 has formulated the Multifractal Model of
Asset Return (MMAR) and the model was subsequently applied to examine asset return
time series in finance (Fisher, Calvet, and Mandelbrot 1997; Calvet, Fisher, and Mandel-
brot 1997). Several refinements have been made to MMAR in order to produce better
results (e.g. Calvet and Fisher 2004; Calvet, Fisher and Thompson 2006). The latest
effort has been the continuous cascade models of asset returns (Bacry, Kozhemyak, and
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Muzy 2008). Bacry et al has laid the ground work to relate the multifractal model to
the stochastic volatility model. Based on their work, I observed that the functional forms
between the SIBM equation and the multifractal model is quite similar. Since both the
SIBM model and the continuous cascade model of Bacry et al produce the similar lognor-
mal cascade distribution, there must exist a relation between them. Thus it is imperative
to examine such relation.

As shown in III.B.2 of Bacry, Kozhemyak, and Muzy 2008, the multifractal random
walk model (MRW) can be constructed as a stochastic volatility model. Using their
notations (changed the time index i to n to avoid confusion), the log-price process is
expressed as χ(t) = B[θ(t)] = lim

Δ→0
χΔ(t) and (assume χΔ(0) = 0)

χΔ(t) =
nmax

Σ
n=0

εneωΔ(nΔ) (28)

, where θ(t) is the trading time, Δ is the (infinitesmally) small scale, nmax is floor(t/Δ),
εn is the Gaussian noise N(0, σ2/Δ) and ωΔ(t) is called the magnitude process, which is
a Gaussian process (with the mean of −λ2 log(T/Δ) as defined in their paper, but we are
not going to discuss λ and T here). Expressed as a return process, we can define rn (not

to be confused with rj defined elsewhere) such that χΔ(t) =
nmax

Σ
n=0

rn and

rn = εneωΔ(nΔ) (29)

. The goal now is to prove that Equation (29) is basically the discrete form of the SIBM
equation in the limit of τc → 0 by equating ωΔ(nΔ) to the construct of the HORN in
Equations (15) and (16). We have mentioned before that τc → 0 is justified in the stock
market due to the no-arbitrage criteria of an efficient market. The argument goes as
following.

In the SIBM case, referring back to Equation (8), we know that τc controls how fast
a pulse decays in the return process r(t), which in turn affects the autocorrelation of the
price process χ(t). Thus the limit of τc → 0 means that there is no autocorrelation in the
price process; or in other words, this limit removes the influence of the half-time and thus
removes the effect of the ∂r(Ω, t)/∂Ω term in Equation (5). The remaining effect from
the scale dimension is that the change of H(t) affects the price process exponentially due
to the eΩ term in Equation (6), as has been discussed for the translational property in
Section 3. We can then rewrite the SIBM equation as

dtχ(t) = Φ
′
eH(t)dtW (t) (30)

where Φ
′

is a constant and W (t) is the standard Brownian motion. It is obvious that
Equations (29) and (30) are the same when Δ → 0 if we equate exp(〈ωΔ(iΔ)〉) to Φ

′
and

the mean detrended ωΔ(iΔ) to H(t). Equation (30) again confirms that the volatility
process lives in the exponential space, which can be a major feature of the MRW model.
It is also intuitive that Equation (30) produces the lognormal cascade if H(t) is a slow
varying Gaussian process with a finite variance.

It is worth noting that, under the limit of τc → 0, Equation (21) can be rewritten into



8 CONCLUSION 43

the simplified SIBM equation for the stock price process:

dtχ(t) = Φ
′
eH(t)

[
dtW (t) + (θ

′ · H(t) + g
′
) dt

]
(31)

, where θ
′
is ”the skewness parameter” in this context, and g

′
is the constant growth term.

This expression could be very useful in finance since most stochastic equations in finance
are written in the stock price processes, instead of the return processes. The complex
constructs in the Ω dimension are removed and the number of parameters is reduced
parsimoniously. Written in this form, the cascade structure becomes very obvious. I must
note that, without the original SIBM equation, its relation to the Langevin equation,
and the data analysis within the (R, log S) framework, the formulation of Equation (31)
would’ve been a wild guess (which nobody seemed to have guessed it right prior to this
paper).

Finally, when H(t) is zero, i.e., in the absence of HORN perturbation, Equation (31)
is reduced to our good old friend – the classical geometric Brownian motion equation:

dtχ(t) = μ dt + σ dtW (t) (32)

This shows that the SIBM model is a valid replacement for the geometric Brownian
motion. The SIBM model incorporates (a) the half-time for autocorrelation τc, and (b)
the HORN perturbation H. These two features can be retained or eliminated according
to the modeling need.

I must stress that MRW model is only a class of the multifractal model, which is shown
closely related to the SIBM model. It remains to be studied whether the SIBM model is
associated with other aspects of the multifractal model.

8 Conclusion

In summary, a new (R, log S) framework is developed for presenting and analyzing the
financial return data. This framework provides powerful guidance and constraints on the
modeling of the underlying stochastic process. From it, important features and exponents
of the stock market are extracted. The scale-invariant Brownian motion equation is
presented, which is used subsequently to model both the stock return process and the
volatility process. The skew lognormal cascade distribution is developed as the static
solution of the return distributions in the financial market, which manifests significant
skewness and kurtosis. The hypothesis of the higher order randomness and the leakage
term is proposed. Based on the volatility autocorrelation, a two-SIBM volatility model
is developed for the time series analysis and the half-times of 20 days and 300 days are
extracted. I suggest an alternative approach that could potentially interpret the volatility
skew/smile problem from the (R, log S) framework. Finally, the MRW model is shown
to be a special case of the SIBM model and we arrive at the simplified SIBM equation
for stock price process. The outcome of this paper is a comprehensive stochastic model
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that can explain both the fat tail distribution in short time scales and volatility clustering
over very long time horizon. Most of the accomplishments in this paper are carried out
through numerical analysis and high level arguments. Detailed mathematical construct
and analytical solutions are largely lacking.

9 Appendix

In this appendix, I present the (R, log S) density plots on CBOE volatility index (VIX),
Swiss Franc-USD exchange rate (CHF), and the yield of 10-year Treasury (TNX). The
purpose is to demonstrate the universality of the funnel shape in terms of the (R, log S)
framework. The two lines in each plot are the exponential envelope, R ∼ Fmean(R)(log S)±
2 · Fstd(R)(log S), where Fmean(R)(log S) and Fstd(R)(log S) are determined by the same
numerical analysis outlined in Section 1 (See Figures 11 and 12). The funnel shape is
more prominent in some than the others. The structure of the leakage term, especially
the sign of θ, is different among them too.

(A) The history of VIX is not long, thus the effect of HORN isn’t fully manifested
yet. However, during the 18 years, VIX has shown considerable deviation from a normal
distribution as in Figure 19. Interestingly, VIX has a positive θ, that is, a skewness
towards the positive return when the volatility (of volatility) is high. This indicates VIX
ramps up quicker than its settling down. Having a skewness θ in a mean-reverting process
is somewhat unexpected.

(B) CHF started to show considerable movement after the US detached herself from
the gold standard in 1975. Thus I choose to present the plot between 1975 and 2008, as
shown in Figure 20. During this period, CHF moves from about $2.7 to $1.0. Thus it is
a long-term decreasing trend (i.e., USD is losing value against Swiss Franc). This trend
is much weaker than that of DJIA, which moves about 4 times faster. The funnel shape
is distinguishable, but not prominent. You can still see the (distorted) circle shape. CHF
has a negative θ, like DJIA. However, its trend and skewness are in the same direction.
This behavior is contrary to DJIA, in which the trend and the skewness are opposite to
each other. This means whenever USD is in a volatile market, it is more likely to lose
than to gain against Swiss Franc.

(C) TNX funnel plot is shown in Figure 21. It has a long history (1962-2008), going
through some of the most turbulent periods in the fixed income market. The funnel shape
is very prominent. Interest rate processes are mean-reverting. In TNX, there is no obvious
skewness when the volatility is high, i.e., θ ≈ 0.
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Figure 19: VIX (CBOE volatility index) Funnel Plot. 10-day intervals. Data from 1990
to 2008. VIX is mean reverting and has a positive skewness.
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Figure 20: Funnel Plot for Swiss Franc-USD Exchange Rate (CHF). 10-day intervals.
Data from 1975 to 2008. CHF has a slowly decreasing trend and has a negative skewness.
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Figure 21: 10-Year Treasury Yield (TNX) Funnel Plot. 10-day intervals. Data from 1962
to 2008. TNX is mean reverting. It has a nearly perfect funnel with no skewness.
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