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Abstract

This working paper presents the general theory of the higher order ”skew lognormal
cascade distribution” as a mathematical extension of the previously proposed skew
lognormal cascade distribution (Stephen Lihn 2008, SSRN: 1273087, which is the
first order cascade over the normal distribution). In particular, the second order
distribution is studied in details, which incorporates the fat tails into the volatility
(aka the volatility of volatility). We show that the second order distribution can
handle very heavy tails and high kurtosis in the high frequency financial time series.
It accurately fits the first four moments of the daily log-returns of Dow, whose
kurtosis is 26. The framework of the higher order lognormal cascade distributions
also provides a new way to study the capital distribution (aka firm size distribution),
the market index, and the market entropy of the stock market. Such study in the
context of stochastic portfolio theory reveals that the origin of the fat tails in the
fluctuations of the market index is from the lognormal cascade structure of the
capital distribution in the market. We show from a simple stochastic model that the
contraction and expansion of the underlying capital distribution is the fundamental
driving force of the bull-bear market cycles and the market volatility in the past
20 years. A stochastic equation is derived to establish the relation between the
market index and the capital distribution, which is exactly the lognormal cascade
equation in our theory. This shows that the fluctuations of the market index are a
natural mathematical consequence of the stochastic calculus on the market portfolio
in which weights are exponentially distributed. Therefore, we conclude that the
phenomena of fat tails should exist everywhere in our financial system.
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1 Defining The Higher Order Lognormal Cascade Dis-
tribution

In this section, we define the higher order theory for the skew lognormal cascade distri-
bution. We shall use a logarithmic model for continuous-time processes. The process X,
which can be price or volatility or an abstract process, shall always be presented in its
logarithm, log X, which is abbreviated as x (See 1.1 of Fernholz 2002).

Under the limit of 7. — 0, the SIBM model (Lihn 2008, SSRN: 1149142) can be
reduced to the following emperical stochastic equation ! :

dix(t) = @ - "D [d,W(t) + (8- H(t) + g) dt]. (1)

The parameters are defined as following: ® is a global scale constant, (3 is "the skewness
parameter”, and g is the constant growth term. H(?) is a time dependent, slow varying and
mean reverting, cyclic process, representing the stochastic volatility term in this context.
The ”slow varying” assumption is called the higher order randomness hypothesis (HORN)
(Lihn 2008, SSRN: 1149142). Since we are defining a static distribution with a delta time
interval At (e.g. At = 1 day or 1 month) from Equation , the exact time dependency
of H(t) is of less interest in this paper (A simple way to model a normally distributed
H(t) is by the Ornstein—Uhlenbeck process). All we are interested in is the kind of static
probability distribution H(t) produces over time ({H(t,) | t,, = n At, n C positive integers
1)

In the previous paper (SSRN: 1273087), we have discussed the case of a normally
distributed H(t), i.e. {H(t,)} ~ N (0,7?). Our new framework here will absorb the case of
a normally distributed H(t), and its resulting skew lognormal cascade distribution, dy/dt.
In that case, the distribution of H(t) will be called ”the zero-th order distribution” and
the distribution of dy/dt will be called ”the first order distribution” in the new framework
we will present in this paper.

In order to present this new framework, we want to first generalize what H(t) can be.
Let’s assume abstractly H(t) can be any skew lognormal cascade distribution with zero
mean (This includes a normal distribution). And such generalization is followed with the
definition of the higher order theory:

IThere is a possible extension by adding one more parameter a:

dix(t) = @ [eﬂ@ AW (1) + O (3. H(t) + g) dt} . 2)

where « could be a positive integer 0, 1, 2, etc. In this paper, we will discuss the emperical case of a = 1.
There is an indication from stochastic portfolio theory that e = 0 or 2 could be potential choices too. The
framework layed out in this paper can be easily extended to investigate these cases. Such investigation
is left for future research.
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Definition 1.1. If H(t) is a (n — 1)-th order skew lognormal cascade distribution, then
we define dy/dt ? is ”lifted” to the n-th order skew lognormal cascade distribution from
H(t)according to Equation . We use the term "lift” since we now have a properly
defined higher order hierarchy. The requirement of zero mean is simply the fact that
any long running average in H(t) can and should be detrended to ®, and one redundant
parameter is reduced by doing so.

Let’s now define the abstract probability density function (pdf) of the n-th order skew
lognormal cascade distribution:

Py (@3 <'>(n)) (3)

in which (e), represents all the parameters required to characterize the n-th order dis-
tribution: The f3, g, ®, and so on, and all of them with proper suffix of (i) where i = 0..n.
More details on (s) ) will follow shortly.

Next we define the kernel function as

1 _w
K(x,H;5,9,9) = me 20(H) 7 (4)

where o(H) = ® - ™. 3 Two special cases of the kernel function are worth mentioning.
First, when g = g = 0, we have

22

K(z,H;0,0,®) = e 20007 (5)

1
V2 o(H)

which resembles the form of the typical (symmetric) stochastic volatility models. Second,
when H is zero (recall that any constant in H is factored to @), we have o(H) = ® and

(z—2g)2

e (6)

1
K(z,0;08,9,®) = me

which is a normal distribution of N (®g, ®?). Notice that in this case, 3 is irrelevant and
therefore should be set to zero for simplicity and convenience.

Definition 1.2. Let’s now define the n-th order distribution in terms of the kernel func-
tion and the lower order distributions:

We call dy/dt either the returns of x or the log-returns of X. It depends on the context of the
discussion. In the financial market, the market indices and stock prices are represented by X, thus
log-returns are mentioned most frequently.

3If Equation is considered, the kernel function becomes

1 (@2 M (tg)?
K(z,H;8,9,®,a) = m e 20 (H)? . (7)
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o0

Py (5 Bnys 9nys Py (#) (1)) = / dH pin-1) (H; <°>(n71)) K (2, H; Binys Ginys Py -
(8)
Again, using the language of lifting, we say p(,—1)(H; (o>(n_1)) is lifted to p(,)(z; (o)(n))
by the kernel K (x,H; Bny, g(n),CI)(n)). This recursive definition starts with the zero-th
order distribution, which is a normal distribution:

P0)(;0, g0y, P(0y) = K(x,0;0, 910y, P(0))- 9)

If we substitute n = ®(g) and 1 = g()P(0), we have poy(z; 0, /n,n) ~ N (1, n?).
The first order distribution is the ”"skew lognormal cascade distribution” defined in
the previous paper (SSRN: 1273087):

(3 By, 9y, Ly; (9) o)) :/ dH po)(H;0,0,n) K(z, H; By, 901, 1)), (10)

where (o>(0) is simply ®(). For simplicity reason, p(x; By, 9a), Pay; o)) has been
written in the form of pny(z;n, 5,9, ®) in which n = <I>( and the suffix is removed in
Bay, 9y, ®a)- Notice that p(g) is made to have zero mean, y = 0. The numerical imple-
mentation of p(;) is reasonably fast and it provides reasonable accuracy when fitting time
series data with kurtosis less than 6. The successful application of p(;y to fit many finan-
cial time series has been demonstrated on the author’s website (See http://www.skew-
lognormal-cascade-distribution.org/apps/| for more details).

In later sections of this paper, we will explore the structure and numerical implemen-
tation of the second order distribution p(s). The need to explore p(y) arises from the fact
that some important time series data exhibit very high kurtosis, which can not be ex-
plained well by p(;). One such example is the one-day log-returns of Dow, whose kurtosis
is 26. Our financial exploration can not be called successful if we can’t fit Dow data with
desired accuracy. We believe the second order distribution gives us enough dimensions to
handle the high frequency data of Dow properly.

The second order distribution is written as

(95 6(2 2)7 (2); <'>(1)) —/ de(l)(H§TI7ﬁ797q)) K(x,?—(;ﬁ@),g@),d)@)), (11)

where (o) (1) contains the four parameters that characterizes p): 7,3, g, ®. However,
since p(;) should have zero mean, we have g = —/3- n?. Therefore, P(2) has six independent
parameters B2y, 92), P2y and By, (1), and ®). We see that p(, 1S more complicated

than p(;). The complexity brings With it more flexibility and power; but at the same time
also demands more computational resources. The reader should be able to derive more
higher order distributions via the recursive relation if that interests you.


http://www.skew-lognormal-cascade-distribution.org/apps/
http://www.skew-lognormal-cascade-distribution.org/apps/
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2 The Moments of The Higher Order Distribution

In this section, we will study the statistic properties for the higher order distributions.
We shall begin with the characteristic function W, (t) = [0 dz e™p, () which is

H
tr—S g (z—P(y) eiﬁ(ﬁ(n)H+g(n)))2_H

1 o0 i
V2r o )// dx dH e o D(n—1) <H; (o>(n71)>. (12)

The integral on x can be carried out exactly,

oo 2 2 .
Woo(t) = [ dre SO s ) (3560, ). (03

o0

Let ¢ = it, we can obtain the k-th moment ,ué") via the Taylor series

\(—iq) Zu S (14)
or in a derivative form

my _ d*

M = d—qk(‘I’<n>(—iQ>)q:O~ (15)

We’d like to carry out the first four moments here. The first moment is

ot [ G pe () 09

It is interesting to note that ,uln) is simply the expected value of the skew terms in

the kernel function in (), (o(H) (3-H +g)). The integral of H can be carried out
by expanding p,—1)(H) into [7 dy pm-2)(y) K <H,y; <°>(n_1>> (via Equation (8)) and

results in

U(n 1)(9)
"P(n-2) (% <.>(n72))'

where Y,—1) = Bn-1) Y+9mn-1) and o(,—1)(y) = P(n_1) - €. The integral of H in the higher
moments can be carried out in a similar fashion and one level of integration is eliminated.
Such simplification is very useful for the numerical implementation of descriptive statistics.

Let H,) = Bm)yH+gn), we can effectively simplify the presentation of higher moments.
The second moment is

(17)

e%n-1) (W)Y -1+

pst = @2, /_ dH e (HY,) +1) pa-1) (H; <.>(M)>. (18)
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When MY” is zero, or more precisely ug") < ,uén), this indicates y(¢) is also an oscillating
process with very large amplitude compared to its almost zero long-term rate of increase.
When n = 1, this is the well known condition of g &~ —3n?. In real world, this is the case
of Dow, representing the US stock market. Dow can have large swings of “50% in each
market cycle while delivers 5-7% long-term rate of return.

The third moment is

ns = 0, / AH e (H + 3B P (M (&) ) (19)
The fourth moment is
= ot / dH e (B + O, +3) py (H:(9) ) (20)

It should be obvious to the reader that the general form of the moments can be calculated
via the generating function of the Hermite Polynomials (See Appendix of Lihn 2008,
SSRN: 1273087). The analytical form of the moments for (n) = (1) have been calculated
previously. The reader can compute them from these formula and compare them to the
results in SSRN 1273087. We list these moments here since some of them will be used in
later sections:

(1) n? [
pi’ = Pezfi = Qe (B +g),
1 2
p) = BTy + ),
(D) _ 3.2 2
py =P ez B3(3y + 35),
1 2
pi) = W45 (392 + 683y + 1),
in which v = 6°n? + 1 and 3, = nfn*+g.
From these moments, the cumulants can be computed numerically. The second cumu-
lant kg is pp — p?, which is the variance. The third cumulant k3 is uz — 3kok1 — K3. The

(21)

skew is defined as /{3//{3/2. The fourth cumulant kg is pg — 4ksky — 353 — 6Kk — 1k7.
And the kurtosis is k4/r3.

3 The Second Order Distribution

In this section, we will analyze the second order distribution p(y), based on the abstract
higher order definitions in Sections [I] and 2] We will also discuss how to implement the
numerical method of computing the pdf.

First of all, we repeat that p(y) has six independent parameters: [(2), g(2), ®(2) and
Bay, 1) and ®(). We'd like to rename these parameters slightly to simplify the notation
within the second order context. We shall denote p(2) as pe)(z; 3, g, ®, 12, B2, P2). For @)
it becomes 7,. For parameters from the first order, 31y, ®(1) become 2, @, and to satisfy
the zero-mean requirement, we have the implicit relation for gy which is go = — 2 - 73
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For parameters from the second order, the suffix is removed; that is, 3(2), g(2), ®(2) become

/67 g7 ®'
It follows from Equation that

* o p(Hime, Ba, g2, @p)  _Gamol0) (370002
pe)(@; B, 9, @, 12, B2, Do) = /_OO dH ~ Var o(H) e 20(0)* ) (22)
where o(H) = @ - ", And we repeat that
% 1 2y (Hoo() (Byyten)?
pay(H;n2, Bas g2, P2) = /_OO dy me 2 e 20(u)” ; (23)
where o(y) = ®5- €’ and go = —F2 - n3. Therefore, p)(x) contains two gaussian-like

integrals. It is easy to verify that [* pw)(z)dz = 1. But we find no general way to
simplify the double integrals in p()(z) due to the e term. However, in the case studies
we know of (Such as the daily log-returns of Dow), 7, is typically much smaller than 1.0
(e.g. 70.2). A Taylor expansion around 7, seems very promising.

Let’s examine the first four moments with the new symbols we define for p9)(x). The
first moment is

Iu§2) = (I)/ dH BH (ﬁ H + g) P (H7 M2, 527 92, (I)Q) (24>

(e e}

The integral on H can be carried out analytically

o) 2,2

u® = <I>/ a B(c*(y)+Yo(y)) + gefzﬁ—lf%w oW (25)
oo V21 n

where Y = By y + g2 and o(y) = @5 -¢? and go = —f5 - n3. Such simplication is very

helpful to speed up the numerical computation.

Let H = 8 'H + g, we can effectively simplify the presentation of higher moments. The
second moment is

s = @2/ dH e (H? + 1) pay(H; 12, B2, g2, P2), (26)

[e.9]

which is simplified to

[ee) 2 92 2 y2
o @2/ gy 20 + Boly) Y +20(y) +9)" +1 554220+ ¥ o) (27)
oo V21 g
The third moment is
u) = @ / dH M (HP + 3H) py(H; 112, B, g2, ). (28)
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The fourth moment is

Mf) = @4/ dH ™ (H4 + 6H? + 3) Py (H;ma, B2, g2, P2). (29)

[e.9]

)

The simplified formula for uéQ) and ,uff can be carried out easily using Maxima, but they

are too complicated to be listed here.

Next, we discuss how to implement p(s) for numerical computation. In most cases, it
is safe to assume 7, < 1 or B, ~ 0. Then intuitively speaking, pn)(H) has a peak near
zero with the standard deviation of ®e”. Therefore we can employ the same numerical
integration technique we used in the previous paper (Lihn 2008, SSRN: 1273087). That
is, first locate where the the maximum probability is in the integrand (finding z,); and
second, determine approximately the "width” of integrand. Then simply integrate far
beyond the ”width” to obtain high precision. The caveat here is that, with the fat tails in
Pa), the implementation has to cover a larger region than when it was Gaussian in order
to provide good convergence.

An implementation for GNU Octave is released on the author’s website (See http://www.skew-
lognormal-cascade-distribution.org/impl/ for more details). As expected, p(s) calculation
is very resource intensive. To run a SQP fit on a small computer, one must simplify the
diff algorithm in some ways. For instance, in the SQP diff function, you can perform
diff on the first four moments and a few important points in the pdf. It will slow you
down significantly if you insist on diffing the entire pdf with many sampling points. The
author has found that diffing the pdf by choosing several points between the peak and
the standard deviation is sufficient to get a reasonably good fit.

4 Better Fit to the Heavy Tails in Stock Market In-
dex

The first order fit to Dow’s high frequence log-returns has a flaw of overestimating the
standard deviation by 20% when the focus is to fit the skewness and kurtosis. This makes
the fitted curve wider than the actual data and predicts too high of the peak probability
density near the center. The first order distribution is not able to get all three moments
right at the same time. The author attributes this discrepancy to the presence of the fat
tails in the volatility term H. Therefore it can not be solved without the second order
distribution. The second order distribution introduces the concept of the fat tails into
the volatility term H in the context of the higher order lognormal cascade. It turns out
the second order distribution works much better for the time series data with very high
kurtosis.

Figure [I| shows the fit of Dow’s daily log-returns from 1928 to 2008 by the first order
distribution p(;y. The standard deviation of the fitted curve is 20% higher than that of


http://www.skew-lognormal-cascade-distribution.org/apps/
http://www.skew-lognormal-cascade-distribution.org/apps/
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the data when our focus is to fit the skewness and the kurtosis precisely. The fitted curve
is not only wider than the data, but the peak probability density is also 20% higher than
that is shown in the data (it is hard to visualize in the log(pdf) plot).

When we use the second order distribution p() to fit the same data, the result is much
better as shown in Figure 2] The peak probability density and the first four moments are
fitted precisely. We want to point out that 7, = 0.19 indicates that there are observable
fat tails in the volatility. A precise measure of the probability density opens up many
applications in risk management. For instance, the daily VaR (value at risk) can be
calculated from p(s). Risk averse investors can even perform stress test on potential large
losses from the small probabilities in the fat tails.

At the end of Section [6] we will further point out that 7, (0.19) in Figure [2] is close
to the standard deviation 7, (0.25 in raw data, 0.21 in model) of the half normalized
variance (t)/2. This is an indication that the second order feature in Dow’s log-returns
could have an origin from the small tails in the underlying capital distribution. The two
have profound connection.

Diow Daily Log Return Fit (1928-2008)
I:I I I I T I

Fit: * data
ita=0.75 — it

heta=-0.10
gr=0.074
phi=1.923
Statistics:
A mean=0.050
std=2.841
skewness=-0.66
kurtogis=26.55

log(pdf)

80 B0 40 20 0 20 40
R (x250)

Figure 1: The First Order Fit to the Dow’s Daily Log-Returns (1928-2008). The standard
deviation is 20% higher than that of the data.
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Diow Daily Log Return Second Order Fit (1525-2003)
I:I I I I T T

Fit:

heta=-0.13
gr=0.076
phi=2.065
eta2=0.194
hetaZ=-0k02
phi2=0.535
Statistics:
rean=0.050
std=2.841
skewness=-0.66
kurtosis=26.55

lag(pdf)

-10

-0 Al -40]

R (-}{EEEI)

Figure 2: The Second Order Fit to the Dow’s Daily Log-Returns (1928-2008). The first
4 moments and the peak probability density are precisely fitted. This is the successful
demonstration of the second order distribution’s capability to handle very heavy tails
(high kurtosis) in high frequency financial time series.

5 A New Look at the Market Portfolio, Market En-
tropy, and Capital Distribution

In this section, we introduce a new way of studying the capital distribution (also known
as the firm size distribution), the market portfolio (aka market index), and the market
entropy. The best known broad stock market indices, such as S&P1500, or Russell 3000,
typically cover a significant portion of publicly traded stocks and are weighted by market
capitalization. Among them, the Dow Jones Wilshire 5000 Total Market Index represents
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the broadest index for the U.S. equity market. Only some smallest stocks (still a few
thousands of them) are left out due to liquidity and research coverage reasons. However,
ignoring the smallest stocks does not pose any problem to representativeness of the broad
market indices because the differences of market capitalization between the largest stocks
and the smallest stocks are so big (exponentially) that the weight of these smallest stocks
is negligibly small in the broad market indices. These broad market indices are capable
of "representing the entire market” by capturing the majority of market fluctuations.

In quantitative finance, the broad market index is studied via the market portfolio.
As in Definition 1.2.3 of Fernholz 2002, the market portfolio is defined as the portfolio
{X,} composed of all the stocks in the stock market, whose value Z is the total market
capitalization of this market,

N
Z=% X, (30)

where X; is the market capitalization of the i-th stock and 3; sums over the entire stock
market and N is the number of stocks in this market. Assuming all stocks have only one
share outstanding, X; is also the per-share price.

The weight of each stock is p; = X;/Z. It is trivial that Zi\;l p; = 1. Following
Section 2.3 of Fernholz 2002, the market entropy is defined as

N
S ==X pilog(pi). (31)

We can define the auxiliary market entropy function S to bridge the relation between S
and Z:

~ N
It is easy to obtain
S
S = 7 + log(Z2). (33)

Traditionally, the distribution of p; is presented in the log-log plot of (i, p;), in which
{pi} is sorted in a descending order; therefore, the suffix i represents the rank in weight,
and p; is the weight of the largest stock in the market. This plot is called "rank distri-
bution”. One such plot from the US stock market as of 12/31/2008 is shown in Figure
Bl As also shown in Figure 5.1 of Fernholz 2002 and discussion thereof, the curves of
the rank distribution since 1929 have a similar shape. This indicates some type of stabil-
ity is present in such distribution and it is likely such distribution follows a predictable
dynamics. Some have argued that the log-log plot should follow the Pareto distribution
for the largest stocks, which is a straight line with a negative slope. But in reality the
linear Pareto distribution is only a convenient concept. The rank distribution is generally
concave and it deviates further from the ideal linear distribution as the rank increases.
Banner et al (Banner, Fernholz, Karatzas, 2005) have proposed the Atlas model and a
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"first order model” to explain the rank distribution. (See also Section 5.5 of Fernholz
2002.)

Rank Distribution of US Stock Market (as of 12/31/2008)

] T
Sk i
=) S0 =
z
N Tatal market size 7. 511 tril
15 Total number of stocks N: 5343
harket entrophy 5: 6.404
0 - i
I
0 0.5 1

logliifmaxilogin)
Figure 3: Rank Distribution of the U.S. Stock Market as of 12/31/2008.

In this paper, we will take a different approach to understand the rank distribution.
Now since the market contains a large collection of stocks, such as in the U.S. stock market,
it is reasonable to assume {p;} can be approximated by a continuous distribution density,
for instance, P (H;H.) dH where H is the logarithm of the market capitalization
(abbreviated as log-market cap) substracted by the quantity H.. The unity equation
vazl pi = 1 is transformed to ffooo P(H;H.) dH = 1. The quantity H, is defined as the
mean of the log-market cap distribution, such that ffooo HP(H;H.) dH = 0. Therefore,
the market cap X; is transformed to "7, (The purpose of H, will be shown shortly.)
The new concept we want to introduce is following.

Equation can be written in a continuous notation as

Z~N / P(H; H,) dH e (34)
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This is trivial enough. What is nontrivial is to identify that P (H;H,) follows one of the
skew lognormal cascade distributions in our higher order framework. For convenience
sake, we assume P(H;H.) is the (n — 1)-th order lognormal cascade distribution with
zero mean (Definition . The requirement of zero mean is satisfied naturally by the
introduction of H.. Then, according to Equation (16)), Z in Equation (34) is the first
moment u&n) of the returns dx/dt of an abstract process x, whose returns dy/dt is lifted
to an n-th order lognormal cascade distribution with 3¢,y =0, g,y = 1, and ®,) = N eMe.
We can call y the ”total market” process. Although this process is abstract, this is a
quick way to see that the market portfolio Z should exhibit fat tails.

Let’s also transform the auxiliary market entropy. Equation (31)) can be written in a
continuous notation as

S~-N / P(H; H,) dH ™7 (H + H,.). (35)

The reader should also notice that, according to Equation , S in Equation is the
first moment ﬁﬁ"’ of the returns dy/dt of another abstract process Y, whose returns dy/dt
is lifted to an n-th order lognormal cascade distribution with S, = 1, gm) = He, and

¢y =—N eMe. We can call Y the ”auxillary market entropy” process.

Let’s now verify what P(H;H,) really looks like in reality and how good it fits our
proposition of a skew lognormal cascade distribution if any. Table [1] lists the mean,
standard deviation, skewness, and kurtosis of the log-market cap distribution of the U.S.
stock market for each year-end from 1991 to 2008. Market cap is in the unit of million
$USD. In our notation, the mean of the distribution is H. whose unit is log(million
$USD).The standard deviation 7. is a measurement of the "width” of the distribution
(in a naive way). N is the number of stocks in our data set. Z is the total market
capitalization in the data set. Due to data quality issue, some stocks are filtered out when
their calculated market capitalizations are too out of range (overestimated) compared to
their company fundamentals.



5 ANEWLOOK AT THE MARKET PORTFOLIO, MARKET ENTROPY, AND CAPITAL DISTRI

Table 1: The mean, standard deviation, skewness, and kurtosis of the log-market cap
distribution of the US stock market for each year-end from 1991 to 2008. Market cap is
in the unit of million $USD. N is the number of stocks in our data set. Z is the total
market capitalization in the data set.

Year mean std (n.) | skewness | kurtosis | N Z (tril §)
(HC)
1990 18.67 2.311 0.0059 -0.3070 | 1871 | 2.514
1991 18.96 2.312 -0.0888 | -0.2458 | 1994 | 3.355
1992 19.09 2.228 -0.1068 | -0.1013 | 2174 | 3.773
1993 19.18 2.128 -0.0556 | -0.0469 | 2557 | 4.366
1994 19.04 2.126 0.0059 -0.1651 | 2801 | 4.261
1995 19.18 2.163 -0.0318 | -0.0378 | 3055 | 5.808
1996 19.21 2.185 -0.0465 | 0.0389 | 3407 | 7.096
1997 19.29 2.225 -0.0173 | 0.1006 | 3666 | 9.568
1998 19.02 2.372 -0.0967 | 0.5757 | 4134 | 11.59
1999 19.11 2.334 0.0809 0.2399 | 4697 | 15.69
2000 18.79 2.483 0.0572 -0.0251 | 4979 | 14.14
2001 18.73 2.545 -0.1890 | 0.1782 5148 | 12.40
2002 18.47 2.548 -0.2890 | 0.6192 | 5343 | 9.800
2003 18.96 2.432 -0.4001 | 1.094 o479 | 12.77
2004 19.16 2.334 -0.3325 | 1.058 o757 | 14.29
2005 19.18 2.309 -0.2216 | 0.6703 | 5980 | 15.03
2006 19.29 2.332 -0.2529 | 0.5257 | 6241 | 17.44
2007 19.12 2.407 -0.3070 | 0.8672 | 6725 | 18.30
2008 18.35 2.621 -0.3858 | 0.7038 | 6843 | 11.40

We can see from Table [I] that the skewness and kurtosis in the data is relatively small
(but not zero, and especially so since 2002). It is reasonable to expect the log-market
cap distribution is roughly a normal distribution. Furthermore, the small skewness and
kurtosis can be easily captured by a first order skew lognormal distribution, which we will
discuss later. Now let’s first examine some important long term trends in the data.

Figure 4] shows the long term trend of log(N), H., and n? from the same data set
behind Table [I The data set is retrieved at every month-end from 1990 to 2008. They
are mean detrended in order to emphasize the fluctuations over time. H, is pretty much
rising and falling with the bull-bear market cycles, while its average level did not change
much in the past 20 years. The most obvious trend is that, apart from small variations,
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N is almost linearly increasing with time,

N(t) = 1453 + 289 x (¢ — 1990), (36)

in which ¢ is in the unit of year. However, there is an important discovery here: The
baseline of 7.(t)* is increasing slowly, following the trend line of log(/N), which is slightly
concave. We can define the ”normalized variance” () for the log-market cap distri-
bution

D(t) = ne(t)” —log(N) + ¢, (37)

where 1. is a constant called the ”characteristic average normalized variance”
such that v (t) becomes a mean-reverting quantity, that is (¢(¢)) = 0. Numerically ). is
about 3.0 in our data set. The normalized variance v (t) plays a critical role in our later

discussion of the origin of the fat tails in the market fluctuations. (Curious readers can
peek at Figure [§])
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Long Term Trend of log(N), He, eta_ in the US Stock Market
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Figure 4: The Long Term Trend of log(N), H., and n? in the U.S. Stock Market. The data
set is retrieved at every month-end from 1990 to 2008. They are mean detrended in order
to emphasize the fluctuations over time. The important discovery here is: The baseline of
n.(t)? is increasing slowly, following the trend line of log(V), from which a mean-reverting
quantity called the ”normalized variance” v (t) is extracted. H. is pretty much rising
and falling with the bull-bear market cycles, while its average level did not change much
in the past 20 years.

Let’s now examine how well P(H;H,) fits to a normal distribution (which is also
the zero-th order lognormal cascade distribution p)(#;7.)) and a first order lognormal
cascade distribution pn)(H;n, 5, g, ®). Figure [5/shows the fit to a normal distribution with
12/31/2008 data. Green line is the best fit of a normal distribution, but the indicated
total market value is 30% higher and the market entropy is 6% lower. Blue line indicates
the theoretical curve derived from Equation ® _which produces correct total market
value and the market entropy, but the "implied distribution” deviates from the raw data.
4 Overall, we consider a normal distribution describes the data roughly okay.

4Since both methods capture different aspects of the data, this is the reason why we present the
normalized variance from both methods (See Figure [§) as a compromise when we discuss the origin of
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On the other hand, P(H; H,) can be very precisely fitted by the first order lognormal
cascade distribution pn)(H;n, 3,9, ®) where g = —f n?, as shown in Figure @ , with
the same 12/31/2008 data. We know that the first order skew lognormal distribution
works very well for the distributions with kurtosis < 6.0. Thus, undoubtly the first order
fit is able to accurately characterize the standard deviation, skewness and kurtosis; and
produce the total market value and the market entropy with smaller than 10~* error. It
is a much superior fit. Careful readers can verify the fit via Equation ([21). The small 7
(0.16) also indicates that P(H;H,) does not deviate much from a normal distribution.

Since P(H; H,) is either roughly a p()(H) or more precisely a p)(H), it indicates the
returns of the total market process y have significant fat tails since its distribution must
be lifted one order higher than that of P(H; H.).

Our observation of a normal distribution in the log-market cap distribution is equiv-
alent to a lognormal distribution in market cap. Such observation is in agreement with
the recent work of Cabral and Mata (Cabral and Mata 2003) on the firm size distribu-
tion. Furthermore, Growiec et al (Growiec, Pammolli, Riccaboni, and Stanley, 2008) have
studied the tail structure of the firm size distribution and concluded that it is a lognor-
mal distribution multiplied by a stretching factor which can lead to a Pareto upper tail.
Whether such a stretching factor is the same as our approach of the first order lognormal
cascade distribution remains to be verified in the future. But by and large, our use of a
normal distribution in log-market cap is a reasonable approximation.

the fat tails when assuming a normally distributed market cap distribution.

5Due to the exponential weight in Z and g, they are very sensitive to the right tail, but far less
sensitive to the left tail. This is expected due to the e terms in the higher order distributions. Thus
one should pay more attention on the behavior of the right tail region, but be somewhat ignorant on how
exactly the fitted curve or theoretical curve behave in the left tail region.
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Capital Distribution: Mormal Fit of Log-Market Cap Distribution (12/31,/2008)
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Figure 5: Normal fit of Log-Market Cap Distribution as of 12/31/2008, p)(H;n.). H.
is added back to the H axis of p()(H;7.) to match the raw data’s distribution. Green
line is the best fit of a normal distribution, but the indicated total market value is 30%
higher and entropy is 6% lower. Blue line indicates the theoretical curve derived from the
simple model, i.e. Equation (39). Note that an accurate description of the right tail is
much more important than the left tail due to the exponential weight in Z and S.
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Capital Distribution: Lagnormal Cascade Fit of Log-Market Cap Distribution (12/31/2003)
0 T T

Flt L] data
He=18.71
eta=0.16 fit

heta=-2.E0
qr=0.067

phi=2.185
Statistics:
mean=18.354 .
S std=2 621 ]
skewness=-0.39 .

kurtosis=0.70

7=11.40%10'%
S=F.40

lag(pdf)

o 10 20 30
log(rmarket cap) (log(bmil))

-10

Figure 6: First order fit of Log-Market Cap Distribution as of 12/31/2008. The first
order lognormal cascade distribution p1)(H;n, 3, g, ®) is able to accurately characterize
the standard deviation, skewness, and kurtosis; and produce the total market value and
the market entropy with smaller than 10™* error. H,. is added back to the H axis of
py(H;n, B, g, ®) to match the raw data’s distribution. Note that an accurate description
of the right tail is much more important than the left tail due to the exponential weight
in Z and S.

Next, we are going to introduce a simple model based on the assumption that the
capital distribution is a normal distribution in the log-market cap space. We shall call
this model "normally distributed log-capitalization model” in this paper. We will
continue to enrich this model in this paper, which allows us to gain some insight on the
total market portfolio Z, the auxiliary entropy S, and eventually the origin of fat tails.
The model here is static, which will be expanded into a stochastic one in next section.
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Now we assume P(H; H,.) is a normal distribution:

e 22 (38)

in which H, is the mean log-market cap and 7? is the variance of the log-market cap
distribution. The integral of Z and S (and therefore S) can be carried out exactly:

Z:NeHché7
S=—(He+n?) Z and S =log(N)— %,

2

(39)

If N, 'H. and 7, are given, Z and S can be calculated. Inversely, since in reality Z, N,
and S are known, we can ”derive” the "implied value” of H. and 7. from the model as

H,=log(Z) +5 —2log(N),
%= log(N) — S.

2

(40)

Such method of obtaining H,. and 7. are illustrated in Figure [j, shown as the blue solid
line, "Model”.

It is interesting to note that, if our proposition on the mean reverting process ¥ (t) is
correct (See Equation (37))), then strictly speaking, S is not mean reverting, but increases
with time in the long term (or, more accurately, increases with N). We can define the
”normalized market entropy” Sy as S —log(/N)/2, which is the truly mean reverting
quantity with regard to the market entropy that won’t increase with time in the long term
(apart from a constant).

The concept of the normalized variance (t) implies an important scaling law
between log(N) and log(Z). By combining Equations and (39), we have

lo8(2) = > 1og(N) + (1, — =20y, (41)
From the discussion around Figure [ we recognize that (¢ (t)) = 0, ¢ and (H.) are
constants over the long term. We arrive that log(Z) and log(/N) have a linear relation
with the slope of "1.5. Figure [7| shows such scaling law in the US stock market. The
linear fit gives the scaling exponent of 1.438, very close to our theoretical value of 1.5 in
Equation (41). This is an amazing scaling law. The total market value created (Z) is
more than proportional to the number of companies put into the market (N). There is
an additional synergy effect of the free market that Adam Smith was talking about in
"Wealth of Nations”. As Warren Buffett always advocates, the free market system in the
United States really works well in creating wealth.
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The Scaling Between logid) and logiM) in the U3 Stock Market

1 - -
—— data
ot —— linear fi

log(Z) (£ in trillion USD)

log(Z) = 1.438 log(N) +-12.054 =

lag (M)

Figure 7: The Scaling Law Between log(Z) and log(/N) in the US Stock Market. The
linear fit gives the scaling exponent of 1.438, very close to the theoretical value of 1.5 in
Equation (41]).

We also notice that log(Z) is affected by both H, and 7.(t)*/2 (linearly), yet S is
affected by 7.(t)*/2 only and in an opposite direction. That is, the market index can
fluctuate due to the movement of the mean and/or the changing shape in the underlying
capital distribution. However, the market entropy won’t change unless the shape changes.
Furthermore, if 7.(t) increases, so does Z, but the market diversity, as indicated by S,
decreases. This is the consequence of large cap stocks dominating the market. Such
opposite movements caused by 7.(t) have a profound influence on market volatility as we
will show in next section.

It would also be interesting to see how these relations hold when P(H; H.) is charac-
terized by the more accurate first order distribution p)(H;7, 5, g, ®) as shown in Figure
[6l However, due to the significant mathematical complexity involved, this is left for future
research.
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6 The Origin of Fat Tails in The Stock Market

So far we have studied the static properties of the capital distribution. Let’s turn our
attention to the stochastic properties of the capital distribution. Our goal in this section
is to demonstrate that the fluctuations of the market portfolio’s value, dlog Z(t)/dt,
will have fat tails due to the presence of the mean reverting process ¢ (t). A stochastic
equation will be derived to establish the relation between Z(t) and v (t), which is exactly
the lognormal cascade equation in our theory.

Our starting point is Corollary 1.1.6 of Fernholz 2002:

dlog Z(t) = 5, plt) dlog X,(t) + (1) d,
dlog X;(t) = (1) dt + X, &, (t) d W, (t),

in which v*(¢) is excess growth rate of the market portfolio, ;(¢) is the growth rate of the
stock X;, and &, (t) is the volatility matrix. We need to make a few assumptions: First,
our interest is in the fat tails. In whatever time series we look at, the tail distribution
stretches far beyond the small "long-term average return”. Therefore, the v* and ~;
terms are significantly smaller than the stochastic processes. For instance, this is very
obvious in Figures [I| and [2| where At is one day and the range of log-returns R (-20 to
+20) is more than 400 times of the mean (0.05) (See http://www.skew-lognormal-cascade-
distribution.org/apps/| for more examples). Thus we can safely drop the v* and ~; terms
for our purpose.

The second assumption is that, in our continuous notation, when we arrange p; into
the rank distribution, we also rewrite X, &, (t) d W, (t) — o;(t) d W;(t). That is, the long-
range correlation of volatility between stocks is simplified in such rank presentation. Such
assumption is similar to the rank-based variance o7, , in Section 5.5 of Fernholz 2002.
In the "first order model” discussion thereof (Definition 5.5.1), 7., is further simplifed
to o7 by assuming the stocks are independent. Apparently, we also made a similar claim
here.

Next we apply the additive rule of the normal distributions: When X and Y are normal
processes, the combined process @ = X + Y has the variance of ¢(Q)* = ¢(X)?> + o(Y)*.
Therefore, we can simplify Equation to dlog Z(t) = 010g z(t) d W (t) in which 010 2 (%)
is the volatility of the market index and

(42)

s 2(0)* = 2, (i(1) 0:(0)" (43)

The third assumption is to further simplify o;(¢). We know that the volatility of the small
cap stocks is larger than that of the large cap stocks so o; should have a dependency on
H. We can write o;(t) ~ o(H,t), which can be viewed as the net volatility that stocks
generally have in their ability to affect the capital distribution near their log-market cap
neighborhood. This allows us to write Equation in a continuous fashion:

H+Hc

Olog 2(1)° =~ N / : P(H,t;H,)dH (GZ—@)(U)Za?(H,t). (44)


http://www.skew-lognormal-cascade-distribution.org/apps/
http://www.skew-lognormal-cascade-distribution.org/apps/
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Equation is similar to Equation 5.5.6 of Fernholz 2002 written in the continuous
notation (except we choose to ignore the growth rate term +; described in Equation 5.5.7
there).

Next, we will study Equation in the normally distributed log-capitalization
model. In this simple model, we observe that since p; ~ e™t"e/Z  the variation of
o(H,t) on ‘H is insignificant in the context of Equation (44)). Therefore, we choose to let
o(H) be a constant o, across H as a first order approximation. o, can be viewed as the
characteristic average volatility that stocks have across the market. Such o, is similar to
the constant volatility in the Atlas model (Example 5.3.3 of Fernholz 2002).

We also want to express an alternative hypothesis that can reach the same effect, that
is,P(H,t;H.) o(H,t) preserves the normality in its distribution. We know from Figure [f]
and related discussion that P(H,t;H,.) has small tails all the time. And the presence of
the right tail will affect oy, #(t) in a great deal due to the e"*"<(t) term. However, we also
know that the volatility o(H,t) is smaller for large stocks (and larger for small stocks).
Thus we can expect that the right tail in P(H,¢;H.) is cancelled out by the decrease of
o(H,t) in large H, resulting in a more or less normally distributed P(H,t; H.) o(H,t).

Furthermore, we assume the time dependency of P(H,t;H,) is characterized by n.(t)
and H.(t); that is,

1 >

P(H,t;He) — P(H; He(t), me(1) = NTI0) e e, (45)

We can then carry out gy, () in a closed form:

e 2 =o.e 2e 2, (46)

Olog Z (t) = \/N
and therefore,

_%e
2

dlog Z(t) =0c.e 2e 2z dW(t). (47)
This is an important result: Equation (47) resembles the form of Equation .
We assume o, is a constant term (that is, remove its time dependency for the time being)
6 . From Equation and discussion thereof, we know . is also a constant and () /2
is a slow varying, mean reverting process. If ¥(¢)/2 produces a skew lognormal cascade
distibution (including a normal distribution), than d log Z(t)/dt is lifted to a lognormal
cascade distribution one order higher than that of ¢(¢)/2. Therefore, dlog Z(t)/dt will
exhibit fat tails and how heavy the tails are is directly driven by the changes of the nor-
malized variance, 1(t). To examine ¢ (t) as a mean reverting process, it is interesting to
relate ¥(t)/2 to the normalized market entropy, (— S(t) + log(N)/2). It is well known
that S(t) is cyclic over long period of time, and the normalized market entropy qualifies
our requirement of being a ”slow varying, mean reverting” process (S(¢) has been cal-
culated since 1939 using CRSP database. See Figure 6.2 of Fernholz 2002). Therefore,
dlog Z(t)/dt exhibits fat tails according to Equation and the cyclic nature of ().

6By assuming o. a constant, it can actually be calculated from other observeables. log(o.) =
Ve /24 (log(oeg z(t))). Since (log(oiog z(t))) = —2.95, we obtain the monthly volatility of o, = 0.24,
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Does Equation really describe what is going on in our financial market? Let’s
compare our model to the market data. In the case of the U.S. stock market, ojg z(t) can
roughly equate to the S&P500 volatility index VIX, which is the annualized volatility that
investors expect for the next one month period. The monthly volatility of the market can
be calculated by % / V/12. Figure|8/shows the mean-detrended logarithm 7 of the monthly
volatility from VIX (blue cross solid line) compared to half of the normalized variance,
¥(t)/2, for each month from 01/1990 to 12/2008. The logarithm of monthly volatility
is a 12-month moving average. The red dotted solid line is based on the normalized
variance calculated directly from 7, and N in the data set. The green solid line is the
”implied normalized variance” derived from the market entropy, that is, mean detrended
(— S + log(N)/2). We found that the evolution of the normalized variance matches
strikingly well with the evolution of market volatility and the bull-bear market cycles
over the past 20 years. And due to the presence of a negative skewness in log-returns
of the stock market index, the high volatility periods typically relate to the bear market
cycles (See Lihn 2008, SSRN 1149142 for more details). In fact, by mimicing Equation
, we can write down the full emperical dynamic equation for the market index
in terms of the normalized variance of the log-market cap distribution:

dilog Z(t) = P - s dtW(t)%—(ﬁ-@%—g)dt . (48)
where (3 is the negative default coefficient and g is the positive growth rate. Assume ()
is distributed normally, 1 (t)/2 ~ N (0, 775)) where 7y, is the standard deviation of 1 (t)/2’s
distribution over time. In order to maintain a long-term positive growth in the market, it
is required that g > —( ni. From our monthly data set, we can calculate 7, = 0.214 and
the VIX data (log(cieg #(t))) implies the standard deviation of Dow’s monthly log-returns
<Ulog Z> = 0.63.

We can validate our model by comparing these emperical values (1, and (o1, 7)) to
the fitted values on Dow’s monthly log-returns from 1990 to 2008, using the first order
lognormal cascade distribution. The first order fit, as shown in Figure [9]is very accurate
on the first four moments. We can see that the fitted 7, (0.25) is within 20% range to

our model prediction (0.214). The fitted standard deviation 4/ uél) (0.503) is also with
20% range compared to the standard deviation (o}g z) implied by the VIX data (0.63).
Consider that 20 years are a short history in terms of the economic cycles ® | both numbers
coming out within 20% range is fairly good. This is a strong validation to our model.

which is annualized to 83%. This is approximately the volatility expected of stocks in general.

"The meaning of mean-detrended logarithm is explained as following. Suppose we have a function
f(z) = Ce**® ) then the mean-detrended logarithm of f(z) is simply a sin(b ), which is the mean
reverting process in f(z) that we are most interested in.
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The “olatility Cycle in the US Stock Market
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Figure 8: The mean-detrended logarithm of monthly volatility of S&P500 (VIX) (cross-
blue line) compared to half of the normalized variance 1(t)/2 for each month from 01,/1990
to 12/2008. The logarithm of monthly volatility is a 12-month moving average. The red
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dotted solid line is the normalized variance calculated directly from 7. and N in the data
set. The green solid line is the ”implied normalized variance” derived from the market
)/2). The evolution of the normalized
variance matches strikingly well with the evolution of market volatility and the bull-bear

entropy, that is, mean detrened (— S + log(NV

market cycles over the past 20 years.
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Diowy Manthly Log Return Fit (1550-2003)
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Figure 9: The first order lognormal cascade distribution fit on Dow’s monthly log-returns
from 1990 to 2008. The first order fit is very accurate on the first four moments. We

can see that the fitted 7, (eta = 0.25) and ,ugl) (std = 0.503) are close (within 20%
range) to our model predictions: Our capital distribution data implies n, = 0.214; and
the VIX data (log(ciog #(t))) implies the standard deviation of Dow’s monthly log-returns
(O10g z) = 0.63. This is a strong validation to our model.

Therefore, the contraction and expansion of the log-market cap distribution
is the fundamnetal driving force of the bull-bear market cycles. We see that
the normalized variance peaked during the 2002 bear market, and again it was moving
up sharply in 2008-2009 as the stock market is heading towards the worst bear market in
50 years. On the other hand, when the normalized variance was decreasing, the market
volatility also decreased, and the stock market enjoyed its bull runs, such as the years

8 A note on the 20-year history: The kurtosis of the 20-year data is 5 times smaller than the kurtosis
of the 80-year data (which is 11). Since kurtosis relates to 7, directly and 7, is the standard deviation of
¥ (t)/2, what it means in our new understanding is that historically not only the market volatility should
be much higher in the future as was in the past, but the capital distribution’s fluctuation should also be
much more volatile. The 20-year history we live is indeed a very peaceful and prosperous period.
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from 1993 to 1998 and again from 2003 to 2007, The market cycles can be explained
strikingly well by the expansion and the contraction of the log-market cap distribution,
as illustrated by 1 (¢)/2. The magnitude of market volatility can be derived from () /2
accordingly.

Conclusion: The fat tails in the fluctuations of market index in the stock
market are a natural mathematical consequence of the structure of the market
capitalization distribution and simple stochastic calculus. We've explained such
structure here. This is the main conclusion of this section. In a more general sense,
fat tailed distribution is the manifestation of an institution composed of many normally
populated constituents whose influences are exponentially distributed. This is the
essence of the lognormal cascade structure. This is also known as a pyramid structure. It
is well known that most human societies, including corporations and governments, are all
based on some sort of pyramid structure. Thus, their aggregate behaviors are all subject
to the phenomena of fat tails if we can quantify their behavior changes over long enough
time horizon. The statistics under such structure deviate significantly from that of a
normal distribution as we would’ve expected from Central Limit Theorem (CLT). It is
evident from the market data that not only the log-returns of a market index exhibit fat
tails, the log-returns of individual stocks also exhibit fat tails. The author has also shown
that the commodities (oil, gold, etc) and Treasury yields all exhibits fat tails and can
be fitted well with the first order lognoral cascade distributions (See http://www.skew-
lognormal-cascade-distribution.org/apps/ ). Thus, fat tails in our financial market are
universal and unavoidable. The large swings in the financial market are with us forever.

This is a somewhat frustrating conclusion. The mathematics of the normal distribution
and CLT has been beautifully developed for 300 years. CLT is regarded as the second
fundamental theorem of probability. It is implicitly believed by many participants and
policy makers in the financial market that, as the financial system gets bigger and more
complicated, the stability of the market will get better — since the aggregate distribution
will approach a normal distribution in some way and the tail probability will become
negligibly small. But Equation indicates we are far from that utopia as long as
¥ (t)/2 continues to make large swings every 10 years or so.

Comment on wealth accumulation: According to Equation , there are two
ways to increase the total wealth of a market, that is, to increase Z by (1) increasing
the average H.; or (2) by increasing the variancen,(t)” of the log-market cap distribu-
tion. However, now we know that the increase in the variance nc(t)2 has an unpleasant
consequence of pumping up the market volatility and incurring market instability (if not
social instability). Intuitively speaking, this makes sense. Increasing the average without
changing the shape of the distribution means everybody shares the prosperity. However,
Increasing the variance means some people become ultra-rich while some are pushed to
the poverty. Even worse, if the right tail is lengthened, such is the case since 2002, the
social injustice is significant. Thus, it seems very important that the policy maker should
watch the shape of the capital distribution carefully. The most serious question is —
Can human beings "manage” the capital distribution of the stock market? In particular,
can FED and SEC minimize the variations of the normalized variance 1(t) as one of their
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missions to stablize the financial market?

Many details remain to be studied and improved upon for future research. First, how
will the model look like if P(H, ¢ ;H,) is characterized by the first order distribution as in
Figure [0, instead of a normal distribution? This will lift d log Z(t)/dt to a second order
distribution. We know from Section 4] that, in order to expand our study of the market
portfolio from 20 years to 80 years, we must incorporate the second order distribution.
The fact that 7, (0.25) is close to 72 (0.19) in Figure[2is not an accident, but an indication
that they have profound connection.

Second, the v* and ~; terms need to be included to give a wholly picture of the market
dynamics. Are they related to the negative default coefficient 3 and the positive growth
rate g in Equation (48)? Study of &, (t) (or the covariance process, o; ; = >, & () & (t) )
is essential to answer such question. If not, then what is the origin of 3 and ¢ in Equation
(8)? Third, the higher order terms in o(H,t) needs to be considered to account for the
market-cap effect.

Comment on democracy: As a side note, the relation between fat tails and a
pyramid structure could also have social applications. Democracy proclaims an equal
weight system. Election reduces the chance of excessive concentration of power. It seems
to be an efficient way to counterbalance the pyramid structure. And the balance of powers
is an central theme of a democratic system. If our mathematical argument is correct, it is
also a proof that a democratic society will be subject to less catastrophic swings, compared
to a tyrannic society.

7 Appendix I: Stochastic Portfolio Theory in Con-
tinuous Notation

The Stochastic Portfolio Theory has been comprehesively constructed in Fernholz (Fern-
holz 2002). The basic building blocks are the stochastic calculus (Ito rule) on the loga-
rithmic model of stock prices and portfolio processes; and several important properties
about the market. The market is assumed to be (1) nondegenerate; (2) having bounded
variance; (3) diverse; and (4) coherent. In addition, portfolios can be constructed via
generating functions and the arbitrage opportunities can be evaluated. We can attempt
to understand some of these topics in our new found continuous notation.
”Nondegenerate” and "bounded variance” are properties related to the covariance
process 0; ;(t) = > & (t) £ (). We are not able to address that in this context.
Coherent: (Definition 2.2.1 of Fernholz 2002) The market is coherent if, for all i,

log p;(t
1tlirn %U =0, a.s. (49)
This condition is simply saying none of the stocks declines too rapidly (Chapter 2 Sum-
mary of Fernholz 2002). In the continuous notation, this condition describes that the

heaviness (kurtosis) of the left tail should not develop too rapidly. The market’s coher-
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ence has a strong relation to the growth rates of the stocks in the market. The market is
coherent if and only if the growth rates are all equal.

The market is coherent most of the time. But we see that when the variance of the
log-market cap distribution is expanding rapidly, the market’s coherence assumption is
greatly challenged. Such is the case of the market crash in late 2008. Many stocks declined
rapidly in a few months, and then subsequently were removed from the market.

Diverse: (Definition 2.2.1 of Fernholz 2002) The market is diverse if there exists a
number § > 0,
p1(t) <1—0,t€[0,00), a.s. (50)

This condition is simply saying the heaviness (kurtosis) of the right tail should be limited.
To be more precise, let’s define £ such that

> 1
/£ P(H;H.) dH = N (51)
Then Equation (50)) is equivelant to
/ P(H;H.) dH "7 < Z (1 -6). (52)
3

Intuitively speaking, this is saying the few largest stocks should not dominate the entire
market in terms of their market cap weights. Otherwise, the market will become very
unstable.

Functionally Generated Portfolio: We will focus on the rank based generating
functions in our context. Let S({p;}) be the generating function. Then the weights of
the generated portfolio are (Theorem 3.1.5 of Fernholz 2002)

N

j=1
We will discuss how to transform the portfolio weight into the weight density in the
continuous notation. We also use the normal distribution model to study the generated
portfolio.

The Market Entropy Generating Function S(p): We now discuss the portfolio
generated by the market entropy function

N
S(-) ==Y _pilog p;, (54)
=1
which yields
—pi log p;
my = P8P (55)

S(p)
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We can rewrite —p; log p; into the continuous notation

N€H+Hc
Z
We notice that log Z — (H + H.) becomes negative for very large H. This indicates such

generating function will encounter some problem when generalized into the continuous
notation. The continuous distribution density for entropy generated portfolio is

—pilog p; ~P(H; H,.) dH (log Z —(H+H.)). (56)

N
IH(H;H.) =P(H;H.) =———— (log Z — (H+H,.)) . 57
(HiHe) = PR o) g (low 2 — (R4 1) (57)
The normalization factor So(p) is fixed by requiring [*°_ TI(H;H,.) dH = 1, which yields
nZ n?
Su(p) =% (1og() + ). (59

The portfolio value Z; will be proportional to

/ N TI(H; H,) dH e e (59)

Consider the normally distributed log-capitalization model, we can use Equation
to simplify II(H;H.) and we get
2 log(N)+ % —H
M H) = o b7 108 5 . (60)
V2w, (log(N) + %)

Such portfolio is a normally distributed portfolio similar to the market (the left part),

butcomplicated by a polynomial term (the right part). The (log(N) + % — H) term
injects underweight in large stocks and overweight in small stocks. This term is linear
in H, so the effect is not drastic. We shall study a similar generating function, which
produces a very elegant result.

Diversity Generating Function D,: (Example 3.4.4 in Fernholz 2002) Another
interesting generating function is

N 1/p
D,() = (Zp”) 0<p<l, (61)

which yields
D,(p)°

This diversity generating function has been used to generate institutional investment
strategies that produces excellent relative returns over the long term.

(62)

T, =
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It is obvious that, when p — 1, such portfolio approaches the market portfolio. We
can rewrite p! into the continuous notation

ep(HJrHc)
ot ~P(H;H,.) dH ZINT (63)

Therefore, the continous distribution density is

p(-1) (H4H,)
(Z/N)"- Dg(p)’
where Dj(p) is a normalization factor that enforces [*° TI(H;H.) dH = 1. Consider the

normally distributed log-capitalization model, we can use Equation to simplify
II(H; H.) and we get

I(H; He) = P(H; He)

(64)

1 - —p)n2)?
(H; H,) = NP g (P (1-pe)” (65)
Notice that Df(p) is fixed by requiring [°°_ TI(H;H.) dH = 1, which yields
Dij(p) = ¢ "0, (66)

2
And the portfolio value at point in time Zp is proportional to N eHcﬂ’%, which converges
to Equation (39) when p — 1.

From Equation ((65]), we find that the portfolio generated by D, is very elegant when
viewed in the normally distributed log-capital model. It is still a normally distributed
portfolio in the log-market cap space, just like the market portfolio, except that the peak
of its distribution is shifted down by (1 — p)n?. That is, it overweights on the smaller
stocks in a systematic way. The strength of such overweight is controlled by the paramter
p.

Intuitively speaking, such a normally distributed portfolio is aided by a natural force
that pushes it toward the market portfolio. Because its peak is smaller than H., the
force is always a positive one and this portfolio will outperform the market over time. By
fine-tuning p in different strages of a market cycle, the fund manager can exploit different
arbitrage opportunities. Since periods of decreasing diversity (or increasing normalized
variance 1 (t)) are often associated with bear markets, the fund manager can even in-
corporate a large-cap (p > 1) short portfolio to hedge the market exposure in times of
trouble. Such hedged portfolio strategy shall be addressed in a future research.

Lastly, it is interesting to note that the polynomial (p* — 3p + 1) in Equation has
the roots of £(v/5 £ 1)/2 when expressed in (p — 1). The higher root is the golden ratio.
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